I03-Macromolecular Crystallography
|
Rebecca
Crawshaw
,
Ross
Smithson
,
Johannes
Hofer
,
Florence J.
Hardy
,
George W.
Roberts
,
Jonathan S.
Trimble
,
Anna R.
Kohn
,
Colin W.
Levy
,
Deborah A.
Drost
,
Christian
Merten
,
Derren J.
Heyes
,
Richard
Obexer
,
Thorsten
Bach
,
Anthony P.
Green
Diamond Proposal Number(s):
[31850]
Open Access
Abstract: The development of [2 + 2] cyclases containing benzophenone triplet sensitizers highlights the potential of engineered enzymes as a platform for stereocontrolled energy transfer photocatalysis. However, the suboptimal photophysical features of benzophenone necessitates the use of ultraviolet light, limits photochemical efficiency and restricts the range of chemistries accessible. Here we engineer an orthogonal Methanococcus jannaschii tyrosyl-tRNA synthetase/tRNA pair for encoding thioxanthone triplet sensitizers into proteins, which can efficiently harness visible light to drive photochemical conversions. Initially, we developed an enantioselective [2 + 2] cyclase that is orders of magnitude more efficient than our previously developed photoenzymes (kcat = 13 s−1, >1,300 turnovers). To demonstrate that thioxanthone-containing enzymes can enable more challenging photochemical conversions, we developed a second oxygen-tolerant enzyme that can steer selective C–H insertions of excited quinolone substrates to afford spirocyclic β-lactams with high selectivity (99% e.e., 22:1 d.r.). This photoenzyme also suppresses a competing substrate decomposition pathway observed with small-molecule sensitizers, underscoring the ability of engineered enzymes to control the fate of excited-state intermediates.
|
May 2025
|
|
|
Open Access
Abstract: ragment screening by crystallography has recently skyrocketed. Multiple synchrotrons have built specialized screening platforms, established workflows, and assembled compound libraries. Crystallographic fragment screening is now widely accessible to groups that had previously not considered the approach. While hundreds of crystallographic fragment-screening campaigns have been conducted in the last few years, most of the underlying data have neither been published nor made publicly accessible. This perspective highlights the importance of establishing effective mechanisms for preserving large and often heterogeneous groups of datasets intrinsic to crystallographic fragment-screening campaigns, thereby ensuring their accessibility for advancing research and enabling applications such as training AI-based models.
|
May 2025
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Zihao
Wang
,
Guodong
Cao
,
Miranda P.
Collier
,
Xingyu
Qiu
,
Sophie
Broadway-Stringer
,
Dominik
Šaman
,
Jediael Z. Y.
Ng
,
Navoneel
Sen
,
Amar J.
Azad
,
Charlotte
Hooper
,
Johannes
Zimmermann
,
Michael A.
Mcdonough
,
Jurgen
Brem
,
Patrick
Rabe
,
Haigang
Song
,
T. Reid
Alderson
,
Christopher J.
Schofield
,
Jani R.
Bolla
,
Kristina
Djinovic-Carugo
,
Dieter O.
Fürst
,
Bettina
Warscheid
,
Matteo T.
Degiacomi
,
Timothy M.
Allison
,
Georg K. A.
Hochberg
,
Carol V.
Robinson
,
Katja
Gehmlich
,
Justin L. P.
Benesch
Open Access
Abstract: The biomechanical properties and responses of tissues underpin a variety important of physiological functions and pathologies. In striated muscle, the actin-binding protein filamin C (FLNC) is a key protein whose variants causative for a wide range of cardiomyopathies and musculoskeletal pathologies. FLNC is a multi-functional protein that interacts with a variety of partners, however, how it is regulated at the molecular level is not well understood. Here we investigate its interaction with HSPB7, a cardiac-specific molecular chaperone whose absence is embryonically lethal. We find that FLNC and HSPB7 interact in cardiac tissue under biomechanical stress, forming a strong hetero-dimer whose structure we solve by X-ray crystallography. Our quantitative analyses show that the hetero-dimer out-competes the FLNC homo-dimer interface, potentially acting to abrogate the ability of the protein to cross-link the actin cytoskeleton, and to enhance its diffusive mobility. We show that phosphorylation of FLNC at threonine 2677, located at the dimer interface and associated with cardiac stress, acts to favour the homo-dimer. Conversely, phosphorylation at tyrosine 2683, also at the dimer interface, has the opposite effect and shifts the equilibrium towards the hetero-dimer. Evolutionary analysis and ancestral sequence reconstruction reveals this interaction and its mechanisms of regulation to date around the time primitive hearts evolved in chordates. Our work therefore shows, structurally, how HSPB7 acts as a specific molecular chaperone that regulates FLNC dimerisation.
|
May 2025
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[35866]
Open Access
Abstract: The catalytic hydrogenation of amides with molecular hydrogen (H2) is an appealing route for the synthesis of valuable amines entering in the preparation of countless organic compounds. Running effective amide hydrogenation under mild H2 pressures is challenging although desirable to preclude the need for specialized high-pressure technologies in research and industry. Here we show that magnetocatalysis with standard supported catalysts enables unprecedented amide hydrogenation at mild conditions. Widely available and commercial platinum on alumina (Pt/Al2O3) was functionalized with iron carbide nanoparticles (ICNPs) to allow for localized and rapid magnetic induction heating resulting in the activation of neighboring Pt sites by thermal energy transfer. Exposure of the ICNPs@Pt/Al2O3 catalyst to an alternating current magnetic field enables highly active and selective hydrogenation of a range of amides at a reactor temperature of 150 °C under 3 bar or even ambient pressure of H2. ICNPs@Pt/Al2O3 reacts adaptively to fluctuations in electricity supply mimicking the use of intermittent renewable energy sources. This work may pave the way toward a greatly enhanced practicability of amide hydrogenation at the laboratory and production scales, and demonstrates more generally the broad potential of the emerging field of magnetocatalysis for synthetic chemistry.
|
Apr 2025
|
|
Krios II-Titan Krios II at Diamond
Krios IV-Titan Krios IV at Diamond
|
Zhuoyao
Chen
,
Gamma
Chi
,
Timea
Balo
,
Xiangrong
Chen
,
Beatriz Ralsi
Montes
,
Steven C.
Clifford
,
Vincenzo
D'Angiolella
,
Timea
Szabo
,
Arpad
Kiss
,
Tibor
Novak
,
András
Herner
,
András
Kotschy
,
Alex N.
Bullock
Diamond Proposal Number(s):
[34631]
Open Access
Abstract: Neomorphic mutations and drugs can elicit unanticipated effects that require mechanistic understanding to inform clinical practice. Recurrent indel mutations in the Kelch domain of the KBTBD4 E3 ligase rewire epigenetic programs for stemness in medulloblastoma by recruiting LSD1-CoREST-HDAC1/2 complexes as neo-substrates for ubiquitination and degradation. UM171, an investigational drug for haematopoietic stem cell transplantation, was found to degrade LSD1-CoREST-HDAC1/2 complexes in a wild-type KBTBD4-dependent manner, suggesting a potential common mode of action. Here, we identify that these neomorphic interactions are mediated by the HDAC deacetylase domain. Cryo-EM studies of both wild-type and mutant KBTBD4 capture 2:1 and 2:2 KBTBD4-HDAC2 complexes, as well as a 2:1:1 KBTBD4-HDAC2-CoREST1 complex, at resolutions spanning 2.7 to 3.3 Å. The mutant and drug-induced complexes adopt similar structural assemblies requiring both Kelch domains in the KBTBD4 dimer for each HDAC2 interaction. UM171 is identified as a bona fide molecular glue binding across the ternary interface. Most strikingly, the indel mutation reshapes the same surface of KBTBD4 providing an example of a natural mimic of a molecular glue. Together, the structures provide mechanistic understanding of neomorphic KBTBD4, while structure-activity relationship (SAR) analysis of UM171 reveals analog S234984 as a more potent molecular glue for future studies.
|
Apr 2025
|
|
I03-Macromolecular Crystallography
|
Kalvis
Brangulis
,
Jill
Malfetano
,
Ashley L.
Marcinkiewicz
,
Alan
Wang
,
Yi-Lin
Chen
,
Jungsoon
Lee
,
Zhuyun
Liu
,
Xiuli
Yang
,
Ulrich
Strych
,
Dagnija
Tupina
,
Inara
Akopjana
,
Maria-Elena
Bottazzi
,
Utpal
Pal
,
Ching-Lin
Hsieh
,
Wen-Hsiang
Chen
,
Yi-Pin
Lin
Diamond Proposal Number(s):
[35587]
Open Access
Abstract: Borrelia burgdorferi (Bb) causes Lyme disease (LD), one of the most common vector-borne diseases in the Northern Hemisphere. Here, we solve the crystal structure of a mutated Bb vaccine antigen, CspZ-YA that lacks the ability to bind to host complement factor H (FH). We generate point mutants of CspZ-YA and identify CspZ-YAI183Y and CspZ-YAC187S to trigger more robust bactericidal responses. Compared to CspZ-YA, these CspZ-YA mutants require a lower immunization frequency to protect mice from LD-associated inflammation and bacterial colonization. Antigenicity of wild-type and mutant CspZ-YA proteins are similar, as measured using sera from infected people or immunized female mice. Structural comparison of CspZ-YA with CspZ-YAI183Y and CspZ-YAC187S shows enhanced interactions of two helices adjacent to the FH-binding sites in the mutants, consistent with their elevated thermostability. In line with these findings, protective CspZ-YA monoclonal antibodies show increased binding to CspZ-YA at a physiological temperature (37 °C). In summary, this proof-of-concept study applies structural vaccinology to enhance intramolecular interactions for the long-term stability of a Bb antigen while maintaining its protective epitopes, thus promoting LD vaccine development.
|
Apr 2025
|
|
Krios I-Titan Krios I at Diamond
Krios II-Titan Krios II at Diamond
|
Diamond Proposal Number(s):
[21404]
Open Access
Abstract: Auxins are a group of phytohormones that control plant growth and development. Their crucial role in plant physiology has inspired development of potent synthetic auxins that can be used as herbicides. Phenoxyacetic acid derivatives are a widely used group of auxin herbicides in agriculture and research. Despite their prevalence, the identity of the transporters required for distribution of these herbicides in plants is both poorly understood and the subject of controversial debate. Here we show that PIN-FORMED auxin transporters transport a range of phenoxyacetic acid herbicides across the membrane. We go on to characterize the molecular determinants of substrate specificity using a variety of different substrates as well as protein mutagenesis to probe the binding site. Finally, we present cryogenic electron microscopy structures of Arabidopsis thaliana PIN8 bound to either 2,4-dichlorophenoxyacetic acid or 4-chlorophenoxyacetic acid. These structures represent five key states from the transport cycle, allowing us to describe conformational changes associated with the transport cycle. Overall, our results reveal that phenoxyacetic acid herbicides use the same export machinery as endogenous auxins and exemplify how transporter binding sites undergo transformations that dictate substrate specificity. These results provide a foundation for future development of novel synthetic auxins and for precision breeding of herbicide-resistant crop plants.
|
Apr 2025
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[31336]
Open Access
Abstract: Pathogens have evolved diverse strategies to counteract host immunity. Ubiquitylation of lipopolysaccharide (LPS) on cytosol-invading bacteria by the E3 ligase RNF213 creates ‘eat me’ signals for antibacterial autophagy, but whether and how cytosol-adapted bacteria avoid LPS ubiquitylation remains poorly understood. Here, we show that the enterobacterium Shigella flexneri actively antagonizes LPS ubiquitylation through IpaH1.4, a secreted effector protein with ubiquitin E3 ligase activity. IpaH1.4 binds to RNF213, ubiquitylates it and targets it for proteasomal degradation, thus counteracting host-protective LPS ubiquitylation. To understand how IpaH1.4 recognizes RNF213, we determined the cryogenic electron microscopy structure of the IpaH1.4–RNF213 complex. The specificity of the interaction is achieved through the leucine-rich repeat of IpaH1.4, which binds the RING domain of RNF213 by hijacking the conserved RING interface required for binding to ubiquitin-charged E2 enzymes. IpaH1.4 also targets other E3 ligases involved in inflammation and immunity through binding to the E2-interacting face of their RING domains, including the E3 ligase LUBAC that is required for the synthesis of M1-linked ubiquitin chains on cytosol-invading bacteria downstream of RNF213. We conclude that IpaH1.4 has evolved to antagonize multiple antibacterial and proinflammatory host E3 ligases.
|
Apr 2025
|
|
I03-Macromolecular Crystallography
|
Abstract: Animal and bacterial cells use nucleotidyltransferase (NTase) enzymes to respond to viral infection and control major forms of immune signaling including cGAS-STING innate immunity and CBASS anti-phage defence1-4. Here we discover a family of bacterial defence systems, which we name Hailong, that use NTase enzymes to constitutively synthesize DNA signals and guard against phage infection. Hailong protein B (HalB) is an NTase that converts deoxy-ATP into single-stranded DNA oligomers. A series of X-ray crystal structures define a stepwise mechanism of HalB DNA synthesis initiated by a C-terminal tyrosine residue that enables de novo enzymatic priming. We show that HalB DNA signals bind to and repress activation of a partnering Hailong protein A (HalA) effector complex. A 2.0 Å cryo-EM structure of the HalA–DNA complex reveals a membrane protein with a conserved ion channel domain and a unique crown domain that binds the DNA signal and gates activation. Analyzing Hailong defence in vivo, we demonstrate that viral DNA exonucleases required for phage replication trigger release of the primed HalA complex and induce protective host cell growth arrest. Our results explain how inhibitory nucleotide immune signals can serve as molecular guards against phage infection and expand the mechanisms NTase enzymes use to control antiviral immunity.
|
Apr 2025
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[34784]
Open Access
Abstract: Plasmonic nanocavities offer exceptional confinement of light, making them effective for energy conversion applications. However, limitations with stability, materials, and chemical activity have impeded their practical implementation. Here we integrate ultrathin palladium (Pd) metal films from sub- to few- atomic monolayers inside plasmonic nanocavities using underpotential deposition. Despite the poor plasmonic properties of bulk Pd in the visible region, minimal loss in optical field enhancement is delivered along with Pd chemical enhancement, as confirmed by ab initio calculations. Such synergistic effects significantly enhance photocatalytic activity of the plasmonic nanocavities as well as photostability by suppressing surface atom migration. We show the atomic alchemical-glazing approach is general for a range of catalytic metals that bridge plasmonic and chemical catalysis, yielding broad applications in photocatalysis for optimal chemical transformation.
|
Apr 2025
|
|