|
Abstract: Theories of the origin of superconductivity in cuprates depend on an understanding of their normal state, which exhibits various competing orders. Transport and thermodynamic measurements on La2 − xSrxCuO4 show signatures of a quantum critical point and the associated fluctuations, including a peak in the electronic specific heat versus doping, near the doping p* where the pseudogap collapses. The fundamental nature of these quantum fluctuations is unclear. Here we use inelastic neutron scattering to show that, close to the superconducting critical temperature and near p*, there are very-low-energy collective spin excitations with characteristic energies of ~5 meV. Cooling and applying a magnetic field creates a mixed state with a stronger magnetic response below 10 meV. We conclude that the low-energy spin fluctuations are due to the collapse of the pseudogap combined with an underlying tendency to magnetic order. We show that the large specific heat near p* can be understood in terms of collective spin fluctuations. The spin fluctuations we measure exist across the superconducting phase diagram and may be related to the strange metal behaviour observed in overdoped cuprates.
|
Jan 2023
|
|
I06-Nanoscience
|
Allan S.
Johnson
,
Daniel
Perez-Salinas
,
Khalid M.
Siddiqui
,
Sungwon
Kim
,
Sungwook
Choi
,
Klara
Volckaert
,
Paulina E.
Majchrzak
,
Soeren
Ulstrup
,
Naman
Agarwal
,
Kent
Hallman
,
Richard F.
Haglund
,
Christian M.
Günther
,
Bastian
Pfau
,
Stefan
Eisebitt
,
Dirk
Backes
,
Francesco
Maccherozzi
,
Ann
Fitzpatrick
,
Sarnjeet S.
Dhesi
,
Pierluigi
Gargiani
,
Manuel
Valvidares
,
Nongnuch
Artrith
,
Frank
De Groot
,
Hyeongi
Choi
,
Dogeun
Jang
,
Abhishek
Katoch
,
Soonnam
Kwon
,
Sang Han
Park
,
Hyunjung
Kim
,
Simon E.
Wall
Diamond Proposal Number(s):
[22048]
Open Access
Abstract: Using light to control transient phases in quantum materials is an emerging route to engineer new properties and functionality, with both thermal and non-thermal phases observed out of equilibrium. Transient phases are expected to be heterogeneous, either through photo-generated domain growth or by generating topological defects, and this impacts the dynamics of the system. However, this nanoscale heterogeneity has not been directly observed. Here we use time- and spectrally resolved coherent X-ray imaging to track the prototypical light-induced insulator-to-metal phase transition in vanadium dioxide on the nanoscale with femtosecond time resolution. We show that the early-time dynamics are independent of the initial spatial heterogeneity and observe a 200 fs switch to the metallic phase. A heterogeneous response emerges only after hundreds of picoseconds. Through spectroscopic imaging, we reveal that the transient metallic phase is a highly orthorhombically strained rutile metallic phase, an interpretation that is in contrast to those based on spatially averaged probes. Our results demonstrate the critical importance of spatially and spectrally resolved measurements for understanding and interpreting the transient phases of quantum materials.
|
Dec 2022
|
|
I05-ARPES
|
Xian
Du
,
L.
Kang
,
Y. Y.
Lv
,
J. S.
Zhou
,
X.
Gu
,
R. Z.
Xu
,
Q. Q.
Zhang
,
Z. X.
Yin
,
W. X.
Zhao
,
Y. D.
Li
,
S. M.
He
,
D.
Pei
,
Y. B.
Chen
,
M. X.
Wang
,
Z. K.
Liu
,
Y. L.
Chen
,
L. X.
Yang
Diamond Proposal Number(s):
[22375]
Abstract: Although the concept of the Luttinger liquid (LL) describing a one-dimensional (1D) interacting fermion system1,2 collapses at higher dimensions, it has been proposed to be relevant to enigmatic problems in condensed matter physics including the normal state of cuprate superconductors3,4,5, unconventional metals6,7 and quantum criticality8,9. Here we investigate the electronic structure of quasi-2D η-Mo4O11, a charge-density wave material, using high-resolution angle-resolved photoemission spectroscopy and ab initio calculations. We show a prototypical LL behaviour originating from the crossed quasi-1D chain arrays hidden in the quasi-2D crystal structure. Our results suggest that η-Mo4O11 materializes the crossed LL phase10,11,12 in its normal state, where the orthogonal orbital components substantially reduce the coupling between intersecting quasi-1D chains and therefore maintain the essential properties of the LL. Our finding not only presents a realization of a 2D LL, but also provides a new angle to understand non-Fermi liquid behaviour in other 2D and 3D quantum materials.
|
Dec 2022
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Matteo
Rossi
,
Motoki
Osada
,
Jaewon
Choi
,
Stefano
Agrestini
,
Daniel
Jost
,
Yonghun
Lee
,
Haiyu
Lu
,
Bai Yang
Wang
,
Kyuho
Lee
,
Abhishek
Nag
,
Yi-De
Chuang
,
Cheng-Tai
Kuo
,
Sang-Jun
Lee
,
Brian
Moritz
,
Thomas P.
Devereaux
,
Zhi-Xun
Shen
,
Jun-Sik
Lee
,
Ke-Jin
Zhou
,
Harold Y.
Hwang
,
Wei-Sheng
Lee
Diamond Proposal Number(s):
[25598, 27558]
Abstract: A defining signature of strongly correlated electronic systems is a rich phase diagram, which consists of multiple broken symmetries, such as magnetism, superconductivity and charge order1,2. In the recently discovered nickelate superconductors3,4,5,6,7,8,9,10, a large antiferromagnetic exchange energy has been reported, which implies the existence of strong electronic correlations11. However, signatures of a broken-symmetry state other than superconductivity have not yet been observed. Here we observe charge ordering in infinite-layer nickelates La1−xSrxNiO2 using resonant X-ray scattering. The parent compound orders along the Ni–O bond direction with an incommensurate wavevector, distinct from the stripe order observed in other nickelates12,13,14 that propagates along a direction 45° to the Ni–O bond. The resonance profile we measure indicates that ordering originates from the nickelate layers and induces a parasitic charge modulation of lanthanum electrons. Upon doping, the charge order diminishes and its wavevector shifts towards commensurate, hinting that strong electronic correlations are likely to be responsible for the ordered state. Our results suggest that the existence of charge order and its potential interplay with antiferromagnetic fluctuations and superconductivity are important themes in nickel-based superconductors.
|
Jul 2022
|
|
I05-ARPES
|
Wujun
Shi
,
Benjamin J.
Wieder
,
Holger L.
Meyerheim
,
Yan
Sun
,
Yang
Zhang
,
Yiwei
Li
,
Lei
Shen
,
Yanpeng
Qi
,
Lexian
Yang
,
Jagannath
Jena
,
Peter
Werner
,
Klaus
Koepernik
,
Stuart
Parkin
,
Yulin
Chen
,
Claudia
Felser
,
B. Andrei
Bernevig
,
Zhijun
Wang
Abstract: Topological physics and strong electron–electron correlations in quantum materials are typically studied independently. However, there have been rapid recent developments in quantum materials in which topological phase transitions emerge when the single-particle band structure is modified by strong interactions. Here we demonstrate that the room-temperature phase of (TaSe4)2I is a Weyl semimetal with 24 pairs of Weyl nodes. Owing to its quasi-one-dimensional structure, (TaSe4)2I also hosts an established charge-density wave instability just below room temperature. We show that the charge-density wave in (TaSe4)2I couples the bulk Weyl points and opens a bandgap. The correlation-driven topological phase transition in (TaSe4)2I provides a route towards observing condensed-matter realizations of axion electrodynamics in the gapped regime, topological chiral response effects in the semimetallic phase, and represents an avenue for exploring the interplay of correlations and topology in a solid-state material.
|
Jan 2021
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
W. S.
Lee
,
K.
Zhou
,
M.
Hepting
,
J.
Li
,
A.
Nag
,
A. C.
Walters
,
M.
Garcia-Fernandez
,
H. C.
Robarts
,
M.
Hashimoto
,
H.
Lu
,
B.
Nosarzewski
,
D.
Song
,
H.
Eisaki
,
Z. X.
Shen
,
B.
Moritz
,
J.
Zaanen
,
T. P.
Devereaux
Diamond Proposal Number(s):
[18462]
Abstract: Copper oxide high-TC superconductors possess a number of exotic orders that coexist with or are proximal to superconductivity. Quantum fluctuations associated with these orders may account for the unusual characteristics of the normal state, and possibly affect the superconductivity. Yet, spectroscopic evidence for such quantum fluctuations remains elusive. Here, we use resonant inelastic X-ray scattering to reveal spectroscopic evidence of fluctuations associated with a charge order in nearly optimally doped Bi2Sr2CaCu2O8+δ. In the superconducting state, while the quasielastic charge order signal decreases with temperature, the interplay between charge order fluctuations and bond-stretching phonons in the form of a Fano-like interference increases, an observation that is incompatible with expectations for competing orders. Invoking general principles, we argue that this behaviour reflects the properties of a dissipative system near an order–disorder quantum critical point, where the dissipation varies with the opening of the pseudogap and superconducting gap at low temperatures, leading to the proliferation of quantum critical fluctuations, which melt charge order.
|
Aug 2020
|
|
I05-ARPES
|
Niels B. M.
Schröter
,
Ding
Pei
,
Maia G.
Vergniory
,
Yan
Sun
,
Kaustuv
Manna
,
Fernando
De Juan
,
Jonas A.
Krieger
,
Vicky
Süss
,
Marcus
Schmidt
,
Pavel
Dudin
,
Barry
Bradlyn
,
Timur K.
Kim
,
Thorsten
Schmitt
,
Cephise
Cacho
,
Claudia
Felser
,
Vladimir N.
Strocov
,
Yulin
Chen
Diamond Proposal Number(s):
[19883, 21400]
Abstract: Topological semimetals in crystals with a chiral structure (which possess a handedness due to a lack of mirror and inversion symmetries) are expected to display numerous exotic physical phenomena, including fermionic excitations with large topological charge1, long Fermi arc surface states2,3, unusual magnetotransport4 and lattice dynamics5, as well as a quantized response to circularly polarized light6. So far, all experimentally confirmed topological semimetals exist in crystals that contain mirror operations, meaning that these properties do not appear. Here, we show that AlPt is a structurally chiral topological semimetal that hosts new four-fold and six-fold fermions, which can be viewed as a higher spin generalization of Weyl fermions without equivalence in elementary particle physics. These multifold fermions are located at high symmetry points and have Chern numbers larger than those in Weyl semimetals, thus resulting in multiple Fermi arcs that span the full diagonal of the surface Brillouin zone. By imaging these long Fermi arcs, we experimentally determine the magnitude and sign of their Chern number, allowing us to relate their dispersion to the handedness of their host crystal.
|
May 2019
|
|
I05-ARPES
|
S. V.
Borisenko
,
D. V.
Evtushinsky
,
Z. H
Liu
,
I.
Morozov
,
R.
Kappenberger
,
S.
Wurmehl
,
B.
Büchner
,
A. N.
Yaresko
,
T. K.
Kim
,
M.
Hoesch
,
T.
Wolf
,
N. D.
Zhigadlo
Diamond Proposal Number(s):
[10372, 11643]
Abstract: Spin–orbit coupling is a fundamental interaction in solids that can induce a broad range of unusual physical properties, from topologically non-trivial insulating states to unconventional pairing in superconductors. In iron-based superconductors its role has, so far, not been considered of primary importance, with models based on spin- or orbital fluctuations pairing being used most widely. Using angle-resolved photoemission spectroscopy, we directly observe a sizeable spin–orbit splitting in all the main members of the iron-based superconductors. We demonstrate that its impact on the low-energy electronic structure and details of the Fermi surface topology is stronger than that of possible nematic ordering. The largest pairing gap is supported exactly by spin–orbit-coupling-induced Fermi surfaces, implying a direct relation between this interaction and the mechanism of high-temperature superconductivity.
|
Dec 2015
|
|
I05-ARPES
|
L. X.
Yang
,
Z. K.
Liu
,
Y.
Sun
,
H.
Peng
,
H. F.
Yang
,
T.
Zhang
,
Binbin
Zhou
,
Y
Zhang
,
Y. F.
Guo
,
Marein
Rahn
,
D.
Prabhakaran
,
Z.
Hussain
,
S. K.
Mo
,
C.
Felser
,
B.
Yan
,
Y. L.
Chen
Diamond Proposal Number(s):
[13177]
Abstract: Three-dimensional (3D) topologicalWeyl semimetals (TWSs) represent a state of quantum matter with unusual electronic structures that resemble both a ‘3D graphene’ and a topological insulator. Their electronic structure displays pairs of Weyl points (through which the electronic bands disperse linearly along all three momentum directions) connected by topological surface states, forming a unique arc-like Fermi surface (FS). Each Weyl point is chiral and contains half the degrees of freedom of a Dirac point, and can be viewed as a magnetic monopole in momentum space. By performing angle-resolved photoemission spectroscopy on the non-centrosymmetric compound TaAs, here we report its complete band structure, including the unique Fermi-arc FS and linear bulk band dispersion across the Weyl points, in agreement with the theoretical calculations1, 2. This discovery not only confirms TaAs as a 3DTWS, but also provides an ideal platform for realizing exotic physical phenomena (for example, negative magnetoresistance, chiral magnetic effects and the quantum anomalous Hall effect) which may also lead to novel future applications.
|
Aug 2015
|
|
I05-ARPES
|
Su-Yang
Xu
,
Nasser
Alidoust
,
Ilya
Belopolski
,
Zhujun
Yuan
,
Guang
Bian
,
Tay-Rong
Chang
,
Hao
Zheng
,
Vladimir N.
Strocov
,
Daniel
Sanchez
,
Guoqing
Chang
,
Chenglong
Zhang
,
Daixiang
Mou
,
Yun
Wu
,
Lunan
Huang
,
Chi-Cheng
Lee
,
Shin-Ming
Huang
,
Baokai
Wang
,
Arun
Bansil
,
Horng-Tay
Jeng
,
Titus
Neupert
,
Adam
Kaminski
,
Hsin
Lin
,
Shuang
Jia
,
M.
Zahid Hasan
Diamond Proposal Number(s):
[10074]
Abstract: Three types of fermions play a fundamental role in our understanding of nature: Dirac, Majorana and Weyl. Whereas Dirac fermions have been known for decades, the latter two have not been observed as any fundamental particle in high-energy physics, and have emerged as a much-sought-out treasure in condensed matter physics. A Weyl semimetal is a novel crystal whose low-energy electronic excitations behave as Weyl fermions. It has received worldwide interest and is believed to open the next era of condensed matter physics after graphene and three-dimensional topological insulators. However, experimental research has been held back because Weyl semimetals are extremely rare in nature. Here, we present the experimental discovery of the Weyl semimetal state in an inversion-symmetry-breaking single-crystalline solid, niobium arsenide (NbAs). Utilizing the combination of soft X-ray and ultraviolet photoemission spectroscopy, we systematically study both the surface and bulk electronic structure of NbAs. We experimentally observe both the Weyl cones in the bulk and the Fermi arcs on the surface of this system. Our ARPES data, in agreement with our theoretical band structure calculations, identify the Weyl semimetal state in NbAs, which provides a real platform to test the potential of Weyltronics.
|
Aug 2015
|
|