Krios IV-Titan Krios IV at Diamond
|
Diamond Proposal Number(s):
[16619]
Open Access
Abstract: Genetic mutations in fibrillin microfibrils cause serious inherited diseases, such as Marfan syndrome and Weill–Marchesani syndrome (WMS). These diseases typically show major dysregulation of tissue development and growth, particularly in skeletal long bones, but links between the mutations and the diseases are unknown. Here we describe a detailed structural analysis of native fibrillin microfibrils from mammalian tissue by cryogenic electron microscopy. The major bead region showed pseudo eightfold symmetry where the amino and carboxy termini reside. On the basis of this structure, we show that a WMS deletion mutation leads to the induction of a structural rearrangement that blocks interaction with latent TGFβ-binding protein-1 at a remote site. Separate deletion of this binding site resulted in the assembly of shorter fibrillin microfibrils with structural alterations. The integrin αvβ3-binding site was also mapped onto the microfibril structure. These results establish that in complex extracellular assemblies, such as fibrillin microfibrils, mutations may have long-range structural consequences leading to the disruption of growth factor signaling and the development of disease.
|
Apr 2023
|
|
Krios IV-Titan Krios IV at Diamond
|
Alexandra
Tsirigotaki
,
Ann
Dansercoer
,
Koen H. G.
Verschueren
,
Iva
Marković
,
Christoph
Pollmann
,
Maximillian
Hafer
,
Jan
Felix
,
Catherine
Birck
,
Wouter
Van Putte
,
Dominiek
Catteeuw
,
Jan
Tavernier
,
J.
Fernando Bazan
,
Jacob
Piehler
,
Savvas N.
Savvides
,
Kenneth
Verstraete
Diamond Proposal Number(s):
[30901]
Abstract: The adipokine Leptin activates its receptor LEP-R in the hypothalamus to regulate body weight and exerts additional pleiotropic functions in immunity, fertility and cancer. However, the structure and mechanism of Leptin-mediated LEP-R assemblies has remained unclear. Intriguingly, the signaling-competent isoform of LEP-R is only lowly abundant amid several inactive short LEP-R isoforms contributing to a mechanistic conundrum. Here we show by X-ray crystallography and cryo-EM that, in contrast to long-standing paradigms, Leptin induces type I cytokine receptor assemblies featuring 3:3 stoichiometry and demonstrate such Leptin-induced trimerization of LEP-R on living cells via single-molecule microscopy. In mediating these assemblies, Leptin undergoes drastic restructuring that activates its site III for binding to the Ig domain of an adjacent LEP-R. These interactions are abolished by mutations linked to obesity. Collectively, our study provides the structural and mechanistic framework for how evolutionarily conserved Leptin:LEP-R assemblies with 3:3 stoichiometry can engage distinct LEP-R isoforms to achieve signaling.
|
Mar 2023
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[14435, 15580, 15836, 15897]
Abstract: In meiosis, a supramolecular protein structure, the synaptonemal complex (SC), assembles between homologous chromosomes to facilitate their recombination. Mammalian SC formation is thought to involve hierarchical zipper-like assembly of an SYCP1 protein lattice that recruits stabilizing central element (CE) proteins as it extends. Here we combine biochemical approaches with separation-of-function mutagenesis in mice to show that, rather than stabilizing the SYCP1 lattice, the CE protein SYCE3 actively remodels this structure during synapsis. We find that SYCP1 tetramers undergo conformational change into 2:1 heterotrimers on SYCE3 binding, removing their assembly interfaces and disrupting the SYCP1 lattice. SYCE3 then establishes a new lattice by its self-assembly mimicking the role of the disrupted interface in tethering together SYCP1 dimers. SYCE3 also interacts with CE complexes SYCE1–SIX6OS1 and SYCE2–TEX12, providing a mechanism for their recruitment. Thus, SYCE3 remodels the SYCP1 lattice into a CE-binding integrated SYCP1–SYCE3 lattice to achieve long-range synapsis by a mature SC.
|
Jan 2023
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[23268]
Abstract: DNA interstrand cross-links are tumor-inducing lesions that block DNA replication and transcription. When cross-links are detected at stalled replication forks, ATR kinase phosphorylates FANCI, which stimulates monoubiquitination of the FANCD2–FANCI clamp by the Fanconi anemia core complex. Monoubiquitinated FANCD2–FANCI is locked onto DNA and recruits nucleases that mediate DNA repair. However, it remains unclear how phosphorylation activates this pathway. Here, we report structures of FANCD2–FANCI complexes containing phosphomimetic FANCI. We observe that, unlike wild-type FANCD2–FANCI, the phosphomimetic complex closes around DNA, independent of the Fanconi anemia core complex. The phosphomimetic mutations do not substantially alter DNA binding but instead destabilize the open state of FANCD2–FANCI and alter its conformational dynamics. Overall, our results demonstrate that phosphorylation primes the FANCD2–FANCI clamp for ubiquitination, showing how multiple posttranslational modifications are coordinated to control DNA repair.
|
Sep 2022
|
|
B23-Circular Dichroism
|
Karl
Frontzek
,
Marco
Bardelli
,
Assunta
Senatore
,
Anna
Henzi
,
Regina R.
Reimann
,
Seden
Bedir
,
Marika
Marino
,
Rohanah
Hussain
,
Simon
Jurt
,
Georg
Meisl
,
Mattia
Pedotti
,
Federico
Mazzola
,
Giuliano
Siligardi
,
Oliver
Zerbe
,
Marco
Losa
,
Tuomas
Knowles
,
Asvin
Lakkaraju
,
Caihong
Zhu
,
Petra
Schwarz
,
Simone
Hornemann
,
Matthew G.
Holt
,
Luca
Simonelli
,
Luca
Varani
,
Adriano
Aguzzi
Diamond Proposal Number(s):
[19680]
Open Access
Abstract: Prion infections cause conformational changes of the cellular prion protein (PrPC) and lead to progressive neurological impairment. Here we show that toxic, prion-mimetic ligands induce an intramolecular R208-H140 hydrogen bond (‘H-latch’), altering the flexibility of the α2–α3 and β2–α2 loops of PrPC. Expression of a PrP2Cys mutant mimicking the H-latch was constitutively toxic, whereas a PrPR207A mutant unable to form the H-latch conferred resistance to prion infection. High-affinity ligands that prevented H-latch induction repressed prion-related neurodegeneration in organotypic cerebellar cultures. We then selected phage-displayed ligands binding wild-type PrPC, but not PrP2Cys. These binders depopulated H-latched conformers and conferred protection against prion toxicity. Finally, brain-specific expression of an antibody rationally designed to prevent H-latch formation prolonged the life of prion-infected mice despite unhampered prion propagation, confirming that the H-latch is an important reporter of prion neurotoxicity.
|
Aug 2022
|
|
Krios IV-Titan Krios IV at Diamond
|
Diamond Proposal Number(s):
[20223]
Open Access
Abstract: Glycogen synthase (GYS1) is the central enzyme in muscle glycogen biosynthesis. GYS1 activity is inhibited by phosphorylation of its amino (N) and carboxyl (C) termini, which is relieved by allosteric activation of glucose-6-phosphate (Glc6P). We present cryo-EM structures at 3.0–4.0 Å resolution of phosphorylated human GYS1, in complex with a minimal interacting region of glycogenin, in the inhibited, activated and catalytically competent states. Phosphorylations of specific terminal residues are sensed by different arginine clusters, locking the GYS1 tetramer in an inhibited state via intersubunit interactions. The Glc6P activator promotes conformational change by disrupting these interactions and increases the flexibility of GYS1, such that it is poised to adopt a catalytically competent state when the sugar donor UDP-glucose (UDP-glc) binds. We also identify an inhibited-like conformation that has not transitioned into the activated state, in which the locking interaction of phosphorylation with the arginine cluster impedes subsequent conformational changes due to Glc6P binding. Our results address longstanding questions regarding the mechanism of human GYS1 regulation.
|
Jul 2022
|
|
Krios I-Titan Krios I at Diamond
|
John J.
Kelly
,
Dale
Tranter
,
Els
Pardon
,
Gamma
Chi
,
Holger
Kramer
,
Lotta
Happonen
,
Kelly M.
Knee
,
Jay M.
Janz
,
Jan
Steyaert
,
Christine
Bulawa
,
Ville O.
Paavilainen
,
Juha T.
Huiskonen
,
Wyatt W.
Yue
Diamond Proposal Number(s):
[20223]
Open Access
Abstract: The integrity of a cell’s proteome depends on correct folding of polypeptides by chaperonins. The chaperonin TCP-1 ring complex (TRiC) acts as obligate folder for >10% of cytosolic proteins, including he cytoskeletal proteins actin and tubulin. Although its architecture and how it recognizes folding substrates are emerging from structural studies, the subsequent fate of substrates inside the TRiC chamber is not defined. We trapped endogenous human TRiC with substrates (actin, tubulin) and cochaperone (PhLP2A) at different folding stages, for structure determination by cryo-EM. The already-folded regions of client proteins are anchored at the chamber wall, positioning unstructured regions toward the central space to achieve their native fold. Substrates engage with different sections of the chamber during the folding cycle, coupled to TRiC open-and-close transitions. Further, the cochaperone PhLP2A modulates folding, acting as a molecular strut between substrate and TRiC chamber. Our structural snapshots piece together an emerging model of client protein folding within TRiC.
|
Apr 2022
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[21426]
Open Access
Abstract: Many regulatory PPP1R subunits join few catalytic PP1c subunits to mediate phosphoserine and phosphothreonine dephosphorylation in metazoans. Regulatory subunits engage the surface of PP1c, locally affecting flexible access of the phosphopeptide to the active site. However, catalytic efficiency of holophosphatases towards their phosphoprotein substrates remains unexplained. Here we present a cryo-EM structure of the tripartite PP1c–PPP1R15A–G-actin holophosphatase that terminates signaling in the mammalian integrated stress response (ISR) in the pre-dephosphorylation complex with its substrate, translation initiation factor 2α (eIF2α). G-actin, whose essential role in eIF2α dephosphorylation is supported crystallographically, biochemically and genetically, aligns the catalytic and regulatory subunits, creating a composite surface that engages the N-terminal domain of eIF2α to position the distant phosphoserine-51 at the active site. Substrate residues that mediate affinity for the holophosphatase also make critical contacts with eIF2α kinases. Thus, a convergent process of higher-order substrate recognition specifies functionally antagonistic phosphorylation and dephosphorylation in the ISR.
|
Oct 2021
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[13587, 14435, 15580, 15836, 15897, 18598, 21777]
Abstract: The synaptonemal complex (SC) is a supramolecular protein assembly that mediates synapsis between homologous chromosomes during meiosis. SC elongation along the chromosome length (up to 24 μm) depends on its midline α-fibrous component SYCE2-TEX12. Here, we report X-ray crystal structures of human SYCE2-TEX12 as an individual building block and on assembly within a fibrous lattice. We combine these structures with mutagenesis, biophysics and electron microscopy to reveal the hierarchical mechanism of SYCE2-TEX12 fiber assembly. SYCE2-TEX12’s building blocks are 2:2 coiled coils that dimerize into 4:4 hetero-oligomers and interact end-to-end and laterally to form 10-nm fibers that intertwine within 40-nm bundled micrometer-long fibers that define the SC’s midline structure. This assembly mechanism bears striking resemblance with intermediate filament proteins vimentin, lamin and keratin. Thus, SYCE2-TEX12 exhibits behavior typical of cytoskeletal proteins to provide an α-fibrous SC backbone that structurally underpins synaptic elongation along meiotic chromosomes.
|
Aug 2021
|
|
I24-Microfocus Macromolecular Crystallography
|
Laiyin
Nie
,
Tomas C.
Pascoa
,
Ashley C. W.
Pike
,
Simon R.
Bushell
,
Andrew
Quigley
,
Gian Filippo
Ruda
,
Amy
Chu
,
Victoria
Cole
,
David
Speedman
,
Tiago
Moreira
,
Leela
Shrestha
,
Shubhashish M. M.
Mukhopadhyay
,
Nicola A.
Burgess-Brown
,
James D.
Love
,
Paul E.
Brennan
,
Elisabeth P.
Carpenter
Diamond Proposal Number(s):
[19301]
Abstract: Very long chain fatty acids (VLCFAs) are essential building blocks for the synthesis of ceramides and sphingolipids. The first step in the fatty acid elongation cycle is catalyzed by the 3-keto acyl-coenzyme A (CoA) synthases (in mammals, ELOVL elongases). Although ELOVLs are implicated in common diseases, including insulin resistance, hepatic steatosis and Parkinson’s, their underlying molecular mechanisms are unknown. Here we report the structure of the human ELOVL7 elongase, which comprises an inverted transmembrane barrel surrounding a 35-Å long tunnel containing a covalently attached product analogue. The structure reveals the substrate-binding sites in the narrow tunnel and an active site deep in the membrane. We demonstrate that chain elongation proceeds via an acyl-enzyme intermediate involving the second histidine in the canonical HxxHH motif. The unusual substrate-binding arrangement and chemistry suggest mechanisms for selective ELOVL inhibition, relevant for diseases where VLCFAs accumulate, such as X-linked adrenoleukodystrophy.
|
Jun 2021
|
|