I04-1-Macromolecular Crystallography (fixed wavelength)
Krios II-Titan Krios II at Diamond
|
Andre
Schutzer Godoy
,
Aline Minalli
Nakamura
,
Alice
Douangamath
,
Yun
Song
,
Gabriela
Dias Noske
,
Victor
Oliveira Gawriljuk
,
Rafaela
Sachetto Fernandes
,
Humberto
D'Muniz Pereira
,
Ketllyn irene
Zagato Oliveira
,
Daren
Fearon
,
Alexandre
Dias
,
Tobias
Krojer
,
Michael
Fairhead
,
Alisa
Powell
,
Louise
Dunnett
,
Jose
Brandao-Neto
,
Rachael
Skyner
,
Rod
Chalk
,
Dávid
Bajusz
,
Miklós
Bege
,
Anikó
Borbás
,
György Miklós
Keserű
,
Frank
Von Delft
,
Glaucius
Oliva
Diamond Proposal Number(s):
[27083, 27023]
Open Access
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs. However, the complexity of the enzyme's structure and kinetics, along with the broad range of recognition sequences and lack of structural complexes, hampers the development of inhibitors. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index, and with no influence of manganese on enzymatic activity. Through combining cryo-electron microscopy at different pHs, X-ray crystallography and biochemical and structural analysis, we showed that NendoU can shift between open and closed forms, which probably correspond to active and inactive states, respectively. We also explored the possibility of NendoU assembling into larger supramolecular structures and proposed a mechanism for allosteric regulation. In addition, we conducted a large fragment screening campaign against NendoU and identified several new allosteric sites that could be targeted for the development of new inhibitors. Overall, our findings provide insights into the complex structure and function of NendoU and offer new opportunities for the development of inhibitors.
|
Apr 2023
|
|
B21-High Throughput SAXS
|
Tyler
Mrozowich
,
Sean M.
Park
,
Maria
Waldl
,
Amy
Henrickson
,
Scott
Tersteeg
,
Corey r.
Nelson
,
Anneke
De Klerk
,
Borries
Demeler
,
Ivo l.
Hofacker
,
Michael t.
Wolfinger
,
Trushar R.
Patel
Diamond Proposal Number(s):
[26855]
Open Access
Abstract: Numerous viruses utilize essential long-range RNA–RNA genome interactions, specifically flaviviruses. Using Japanese encephalitis virus (JEV) as a model system, we computationally predicted and then biophysically validated and characterized its long-range RNA–RNA genomic interaction. Using multiple RNA computation assessment programs, we determine the primary RNA–RNA interacting site among JEV isolates and numerous related viruses. Following in vitro transcription of RNA, we provide, for the first time, characterization of an RNA–RNA interaction using size-exclusion chromatography coupled with multi-angle light scattering and analytical ultracentrifugation. Next, we demonstrate that the 5′ and 3′ terminal regions of JEV interact with nM affinity using microscale thermophoresis, and this affinity is significantly reduced when the conserved cyclization sequence is not present. Furthermore, we perform computational kinetic analyses validating the cyclization sequence as the primary driver of this RNA–RNA interaction. Finally, we examined the 3D structure of the interaction using small-angle X-ray scattering, revealing a flexible yet stable interaction. This pathway can be adapted and utilized to study various viral and human long-non-coding RNA–RNA interactions and determine their binding affinities, a critical pharmacological property of designing potential therapeutics.
|
Mar 2023
|
|
B21-High Throughput SAXS
|
Tobias
Schmidt
,
Adrianna
Dabrowska
,
Joseph A.
Waldron
,
Kelly
Hodge
,
Grigorios
Koulouras
,
Mads
Gabrielsen
,
June
Munro
,
David C.
Tack
,
Gemma
Harris
,
Ewan
Mcghee
,
David
Scott
,
Leo m.
Carlin
,
Danny
Huang
,
John
Le quesne
,
Sara
Zanivan
,
Ania
Wilczynska
,
Martin
Bushell
Diamond Proposal Number(s):
[21657]
Open Access
Abstract: Altered eIF4A1 activity promotes translation of highly structured, eIF4A1-dependent oncogene mRNAs at root of oncogenic translational programmes. It remains unclear how these mRNAs recruit and activate eIF4A1 unwinding specifically to facilitate their preferential translation. Here, we show that single-stranded RNA sequence motifs specifically activate eIF4A1 unwinding allowing local RNA structural rearrangement and translation of eIF4A1-dependent mRNAs in cells. Our data demonstrate that eIF4A1-dependent mRNAs contain AG-rich motifs within their 5’UTR which specifically activate eIF4A1 unwinding of local RNA structure to facilitate translation. This mode of eIF4A1 regulation is used by mRNAs encoding components of mTORC-signalling and cell cycle progression, and renders these mRNAs particularly sensitive to eIF4A1-inhibition. Mechanistically, we show that binding of eIF4A1 to AG-rich sequences leads to multimerization of eIF4A1 with eIF4A1 subunits performing distinct enzymatic activities. Our structural data suggest that RNA-binding of multimeric eIF4A1 induces conformational changes in the RNA resulting in an optimal positioning of eIF4A1 proximal to the RNA duplex enabling efficient unwinding. Our data proposes a model in which AG-motifs in the 5’UTR of eIF4A1-dependent mRNAs specifically activate eIF4A1, enabling assembly of the helicase-competent multimeric eIF4A1 complex, and positioning these complexes proximal to stable localised RNA structure allowing ribosomal subunit scanning.
|
Feb 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[26998, 22717, 28172]
Open Access
Abstract: NSP14 is a dual function enzyme containing an N-terminal exonuclease domain (ExoN) and C-terminal Guanine-N7-methyltransferase (N7-MTase) domain. Both activities are essential for the viral life cycle and may be targeted for anti-viral therapeutics. NSP14 forms a complex with NSP10, and this interaction enhances the nuclease but not the methyltransferase activity. We have determined the structure of SARS-CoV-2 NSP14 in the absence of NSP10 to 1.7 Å resolution. Comparisons with NSP14/NSP10 complexes reveal significant conformational changes that occur within the NSP14 ExoN domain upon binding of NSP10, including helix to coil transitions that facilitate the formation of the ExoN active site and provide an explanation of the stimulation of nuclease activity by NSP10. We have determined the structure of NSP14 in complex with cap analogue 7MeGpppG, and observe conformational changes within a SAM/SAH interacting loop that plays a key role in viral mRNA capping offering new insights into MTase activity. We perform an X-ray fragment screen on NSP14, revealing 72 hits bound to sites of inhibition in the ExoN and MTase domains. These fragments serve as excellent starting point tools for structure guided development of NSP14 inhibitors that may be used to treat COVID-19 and potentially other future viral threats.
|
Jan 2023
|
|
NONE-No attached Diamond beamline
|
Patrizio
Di micco
,
Albert A.
Antolin
,
Costas
Mitsopoulos
,
Eloy
Villasclaras-Fernandez
,
Domenico
Sanfelice
,
Daniela
Dolciami
,
Pradeep
Ramagiri
,
Ioan l.
Mica
,
Joseph e.
Tym
,
Philip w.
Gingrich
,
Huabin
Hu
,
Paul
Workman
,
Bissan
Al-Lazikani
Open Access
Abstract: canSAR (https://cansar.ai) is the largest public cancer drug discovery and translational research knowledgebase. Now hosted in its new home at MD Anderson Cancer Center, canSAR integrates billions of experimental measurements from across molecular profiling, pharmacology, chemistry, structural and systems biology. Moreover, canSAR applies a unique suite of machine learning algorithms designed to inform drug discovery. Here, we describe the latest updates to the knowledgebase, including a focus on significant novel data. These include canSAR’s ligandability assessment of AlphaFold; mapping of fragment-based screening data; and new chemical bioactivity data for novel targets. We also describe enhancements to the data and interface.
|
Nov 2022
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[16258]
Open Access
Abstract: Mobile genetic elements control their life cycles by the expression of a master repressor, whose function must be disabled to allow the spread of these elements in nature. Here, we describe an unprecedented repression-derepression mechanism involved in the transfer of Staphylococcus aureus pathogenicity islands (SaPIs). Contrary to the classical phage and SaPI repressors, which are dimers, the SaPI1 repressor StlSaPI1 presents a unique tetrameric conformation never seen before. Importantly, not just one but two tetramers are required for SaPI1 repression, which increases the novelty of the system. To derepress SaPI1, the phage-encoded protein Sri binds to and induces a conformational change in the DNA binding domains of StlSaPI1, preventing the binding of the repressor to its cognate StlSaPI1 sites. Finally, our findings demonstrate that this system is not exclusive to SaPI1 but widespread in nature. Overall, our results characterize a novel repression-induction system involved in the transfer of MGE-encoded virulence factors in nature.
|
Oct 2022
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[24557]
Open Access
Abstract: Type I CRISPR systems are the most common CRISPR type found in bacteria. They use a multisubunit effector, guided by crRNA, to detect and bind dsDNA targets, forming an R-loop and recruiting the Cas3 enzyme to facilitate target DNA destruction, thus providing immunity against mobile genetic elements. Subtypes have been classified into families A-G, with type I-G being the least well understood. Here, we report the composition, structure and function of the type I-G Cascade CRISPR effector from Thioalkalivibrio sulfidiphilus, revealing key new molecular details. The unique Csb2 subunit processes pre-crRNA, remaining bound to the 3′ end of the mature crRNA, and seven Cas7 subunits form the backbone of the effector. Cas3 associates stably with the effector complex via the Cas8g subunit and is important for target DNA recognition. Structural analysis by cryo-Electron Microscopy reveals a strikingly curved backbone conformation with Cas8g spanning the belly of the structure. These biochemical and structural insights shed new light on the diversity of type I systems and open the way to applications in genome engineering.
|
Oct 2022
|
|
I23-Long wavelength MX
|
Diamond Proposal Number(s):
[20281]
Open Access
Abstract: The introduction of phosphorothioate (PS) linkages to the backbone of therapeutic nucleic acids substantially increases their stability and potency. It also affects their interactions with cellular proteins, but the molecular mechanisms that underlie this effect are poorly understood. Here, we report structural and biochemical studies of interactions between annexin A2, a protein that does not possess any known canonical DNA binding domains, and phosphorothioate-modified antisense oligonucleotides. We show that a unique mode of hydrophobic interactions between a sulfur atom of the phosphorothioate group and lysine and arginine residues account for the enhanced affinity of modified nucleic acid for the protein. Our results demonstrate that this mechanism of interaction is observed not only for nucleic acid-binding proteins but can also account for the association of PS oligonucleotides with other proteins. Using the anomalous diffraction of sulfur, we showed that preference for phosphorothioate stereoisomers is determined by the hydrophobic environment around the PS linkage that comes not only from protein but also from additional structural features within the ASO such as 5-Me groups on cytosine nucleobases.
|
Sep 2022
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
|
Herman K. H.
Fung
,
Shelley
Grimes
,
Alexis
Huet
,
Robert L.
Duda
,
Maria
Chechik
,
Joseph
Gault
,
Carol V.
Robinson
,
Roger W.
Hendrix
,
Paul J.
Jardine
,
James F.
Conway
,
Christoph G..
Baumann
,
Alfred A.
Antson
Open Access
Abstract: Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29. Detailed mechanistic understanding exists for pac and phi29, but not for cos. Here, we reconstituted in vitro a cos packaging system based on bacteriophage HK97 and provided a detailed biochemical and structural description. We used a photobleaching-based, single-molecule assay to determine the stoichiometry of the DNA-translocating ATPase large terminase. Crystal structures of the large terminase and DNA-recruiting small terminase, a first for a biochemically defined cos system, reveal mechanistic similarities between cos and pac systems. At the same time, mutational and biochemical analyses indicate a new regulatory mechanism for ATPase multimerization and coordination in the HK97 system. This work therefore establishes a framework for studying the evolutionary relationships between ATP-dependent DNA translocation machineries in double-stranded DNA viruses.
|
Aug 2022
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[26855]
Open Access
Abstract: Human Long Intergenic Noncoding RNA-p21 (LincRNA-p21) is a regulatory noncoding RNA that plays an important role in promoting apoptosis. LincRNA-p21 is also critical in down-regulating many p53 target genes through its interaction with a p53 repressive complex. The interaction between LincRNA-p21 and the repressive complex is likely dependent on the RNA tertiary structure. Previous studies have determined the two-dimensional secondary structures of the sense and antisense human LincRNA-p21 AluSx1 IRs using SHAPE. However, there were no insights into its three-dimensional structure. Therefore, we in vitro transcribed the sense and antisense regions of LincRNA-p21 AluSx1 Inverted Repeats (IRs) and performed analytical ultracentrifugation, size exclusion chromatography, light scattering, and small angle X-ray scattering (SAXS) studies. Based on these studies, we determined low-resolution, three-dimensional structures of sense and antisense LincRNA-p21. By adapting previously known two-dimensional information, we calculated their sense and antisense high-resolution models and determined that they agree with the low-resolution structures determined using SAXS. Thus, our integrated approach provides insights into the structure of LincRNA-p21 Alu IRs. Our study also offers a viable pipeline for combining the secondary structure information with biophysical and computational studies to obtain high-resolution atomistic models for long noncoding RNAs.
|
Jun 2022
|
|