I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[28460]
Open Access
Abstract: This study focuses on the use of methacrylic acid polymers synthesised via the Reversible Addition Fragmentation chain Transfer (RAFT) polymerisation method for the production of amorphous solid dispersions (ASDs) by ball milling, to kinetically solubilize a poorly water-soluble model drug. The solid-state characteristics and the physical stability of the formulations were investigated using X-ray diffraction, differential scanning calorimetry, and infrared spectroscopy. This was followed by dissolution studies in different media. It was discovered that the acidic polymers of methacrylic acid were capable of interacting with the weakly basic drug lidocaine and its hydrochloride salt form to produce ASDs when a polymer to drug ratio of 70:30 w/w was used. The ASDs remained amorphous following storage under accelerated aging conditions (40 °C and 75% relative humidity) over 8 months. Fast dissolution and increased lidocaine solubility in different media were obtained from the ASDs owing to the reduced microenvironment pH and enhanced solubilization of the drug caused by the presence of the acidic polymer in the formulation. Production of ASDs using well-defined RAFT-synthesised acidic polymers is a promising formulation strategy to enhance the pharmaceutical properties of basic poorly water-soluble drugs.
|
Aug 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[18720, 21819]
Open Access
Abstract: The combination of poorly-soluble drugs with small molecule co-formers to generate amorphous solid dispersions (ASDs) has great potential to improve dissolution rate and kinetic solubility, and thus increase the bioavailability of these active ingredients. However, such ASDs are known to be unstable and to crystallise upon storage or heating. In this work, we explore the crystallisation of flufenamic acid (FFA) from ASDs prepared with trehalose. FFA-trehalose mixtures were prepared at a range of w/w composition ratios, heated to melting and crash cooled to form ASDs. They were then subject to a further heat/cool cycle, which was monitored by simultaneous differential scanning calorimetry – X-ray diffraction to observe the phase changes occurring. These varied with the composition of the blend. Upon short-term storage, formulations with low trehalose contents (FFA:trehalose 5:1 w/w) recrystallised into form I FFA, while higher trehalose contents crystallised to FFA form IV. When heated, all FFA trehalose combinations ultimately recrystallised into form I. Upon a second cooling cycle, systems with low trehalose content (FFA:trehalose 5:1 w/w) recrystallised into form IV, while higher trehalose contents led to FFA form I. It is thus clear that even with a single excipient it is possible to control the crystallisation pathway through judicious choice of the formulation parameters.
|
Jul 2023
|
|
DL-SAXS-Offline SAXS and Sample Environment Development
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[16566, 26258, 28627]
Open Access
Abstract: Delivery of chemotherapy drugs specifically to cancer cells raises local drug doses in tumors and therefore kills more cancer cells while reducing side effects in other tissues, thereby improving oncological and quality of life outcomes. Cubosomes, liquid crystalline lipid nanoparticles, are potential vehicles for delivery of chemotherapy drugs, presenting the advantages of biocompatibility, stable encapsulation, and high drug loading of hydrophobic or hydrophilic drugs. However, active targeting of drug-loaded cubosomes to cancer cells, as opposed to passive accumulation, remains relatively underexplored. We formulated and characterized cubosomes loaded with potential cancer drug copper acetylacetonate and functionalized their surfaces using click chemistry coupling with hyaluronic acid (HA), the ligand for the cell surface receptor CD44. CD44 is overexpressed in many cancer types including breast and colorectal. HA-tagged, copper-acetylacetonate-loaded cubosomes have an average hydrodynamic diameter of 152 nm, with an internal nanostructure based on the space group Im3m. These cubosomes were efficiently taken up by two CD44-expressing cancer cell lines (MDA-MB-231 and HT29, representing breast and colon cancer) but not by two CD44-negative cell lines (MCF-7 breast cancer and HEK-293 kidney cells). HA-tagged cubosomes caused significantly more cell death than untargeted cubosomes in the CD44-positive cells, demonstrating the value of the targeting. CD44-negative cells were equally relatively resistant to both, demonstrating the specificity of the targeting. Cell death was characterized as apoptotic. Specific targeting and cell death were evident in both 2D culture and 3D spheroids. We conclude that HA-tagged, copper-acetylacetonate-loaded cubosomes show great potential as an effective therapeutic for selective targeting of CD44-expressing tumors.
|
Aug 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[18720, 21819]
Abstract: Flufenamic acid (FFA) is a highly polymorphic drug molecule with nine crystal structures reported in the Cambridge Structural Database. This study explores the use of synchrotron X-ray powder diffraction combined with differential scanning calorimetry to study crystallization and polymorphic phase transitions upon heating FFA–polymer amorphous solid dispersions (ASDs). Ethyl cellulose (EC, 4 cp) and hydroxypropylmethylcellulose (HPMC) grades with different viscosities and substitution patterns were used to prepare dispersions with FFA at 5:1, 2:1, 1:1, and 1:5 w/w drug/polymer ratios by quench cooling. We employed a 6 cp HPMC 2910 material and two HPMC 2208 samples at 4000 and 100 000 cp. Hyphenated X-ray diffraction (XRD)–differential scanning calorimetry (DSC) studies show that the 6 and 100 000 cp HPMCs and 4 cp EC polymers can stabilize FFA form IV by inhibiting the transition to form I during heating. It appears that the polymers stabilize FFA in both amorphous and metastable forms via a combination of intermolecular interactions and viscosity effects. Increasing the polymer content of the ASD also inhibits polymorphic transitions, with drug/polymer ratios of 1:5 w/w resulting in FFA remaining amorphous during heating. The comparison of FFA ASDs prepared with different samples of HPMCs and ECs suggests that the chemical substitution of the polymer (HPMC 2208 has 19–24% methoxy groups and 4–12% hydroxypropyl groups, while HPMC 2910 has 28–30% methoxy groups and 7–12% hydroxypropyl groups) plays a more significant role in directing polymorphic transitions than the viscosity. A previously unreported polymorph of FFA was also noted during heating but its structure could not be determined.
|
Mar 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[28460]
Abstract: Sales of substandard and falsified medical products (SF) are rising rapidly everywhere around the globe. The wide and easy access to these products is an alarming issue to the global health systems and undermined the health of patients, especially with the thrive of online commerce. To tackle this threat to public health, new ways to access these products should be identified and detection technologies should be strengthened. The overarching aim of this study was to investigate if herbal supplements sold online claiming to be natural alternatives to Viagra® were amongst these SF medical products and how effective different analytical techniques are in providing information about these products. 3 products which claimed to be herbal supplements for men sexual performance were purchased from an e-commerce platform. Two products were received as unregistered generic sildenafil citrate tablets manufactured in India (and thus different to the products information on the website) while one product was received in the same packaging as shown on the website, claiming to be an herbal product. Nevertheless, all products were proven to contain sildenafil citrate, the active pharmaceutical ingredients in Viagra® after the comprehensive analytical tests. The results elucidated that the quality standards for the unregistered generic sildenafil citrate tablets were fulfilled according to the British Pharmacopeia, but the falsified product failed the quality tests and contained approximately 200 mg sildenafil citrate, which is equivalent to 2-fold of the daily maximum dose. Furthermore, physical characterisations, including powder x-ray diffraction and thermal analysis were performed and revealed that the polymorphic forms of sildenafil citrate were different, demonstrating the importance of employing thermal analysis in addition to the conventional analysis techniques for the substandard and falsified medical products. These techniques provided valuable insights into the physical form of the active ingredient in these products. What is more, the ease with which these SF products were obtained and confirmed to be misleading consumers emphasises the need for tighter regulation for e-commerce websites in line with those enforced on online pharmacies.
|
Feb 2022
|
|
|
João
M. C. De Assis
,
Eduardo J.
Barbosa
,
Vinícius D. N.
Bezzon
,
Felipe R.
Lourenço
,
Flavio M. S.
Carvalho
,
J. R.
Matos
,
Nadia
Araci Bou-Chacra
,
Chris J.
Benmore
,
Stephen R.
Byrn
,
Fanny N.
Costa
,
Gabriel
L. B. De Araujo
Abstract: The FDA-approved anthelmintic flubendazole has shown potential to be repositioned to treat cancer and dry macular degeneration; however, its poor water solubility limits its use. Amorphous solid dispersions may overcome this challenge, but the balance of excipients may impact the preparation method and drug release. The purpose of this study was to evaluate the influence of adjuvants and drug loading on the development of an amorphous solid dispersion of flubendazole-copovidone by hot-melt extrusion. The drug, copovidone, and adjuvants (magnesium stearate and hydroxypropyl cellulose) mixtures were statistically designed, and the process was performed in a twin-screw extruder. The study showed that flubendazole and copovidone mixtures were highly extrudable, except when drug loading was high (>40%). Furthermore, magnesium stearate positively impacted the extrusion and was more effective than hydroxypropyl cellulose. The extruded materials were evaluated by modulated differential scanning calorimetry and X-ray powder diffraction, obtaining positive amorphization and physical stability results. Pair distribution function analysis indicated the presence of drug-rich domains with medium-range order structure and no evidence of polymer-drug interaction. All extrudates presented faster dissolution (HCl, pH 1.2) than pure flubendazole, and both adjuvants had a notable influence on the dissolution rate. In conclusion, hot-melt extrusion may be a viable option to obtain stable flubendazole:copovidone amorphous dispersions.
|
Jan 2022
|
|
B21-High Throughput SAXS
|
Open Access
Abstract: Antihistamines are capable of blocking mediator responses in allergic reactions including allergic rhinitis and dermatological reactions. By incorporating various H1 receptor antagonists into a lipid cubic phase network, these active ingredients can be delivered locally over an extended period of time owing to the mucoadhesive nature of the system. Local delivery can avoid inducing unwanted side effects, often observed after systematic delivery. Lipid-based antihistamine delivery systems are shown here to exhibit prolonged release capabilities. In vitro drug dissolution studies investigated the extent and release rate of two model first-generation and two model second-generation H1 antagonist antihistamine drugs from two monoacyglycerol-derived lipid models. To optimize the formulation approach, the systems were characterized macroscopically and microscopically by small-angle X-ray scattering and polarized light to ascertain the mesophase accessed upon an incorporation of antihistamines of varying solubilities and size. The impact of encapsulating the antihistamine molecules on the degree of mucoadhesivity of the lipid cubic systems was investigated using multiparametric surface plasmon resonance. With the ultimate goal of developing therapies for the treatment of allergic reactions, the ability of the formulations to inhibit mediator release utilizing RBL-2H3 mast cells with the propensity to release histamine upon induction was explored, demonstrating no interference from the lipid excipient on the effectiveness of the antihistamine molecules.
|
Sep 2021
|
|
B23-Circular Dichroism
|
Diamond Proposal Number(s):
[21245]
Open Access
Abstract: G-quadruplex (G4) forming DNA sequences were recently found to play a crucial role in the regulation of genomic processes such as replication, transcription and translation, also related to serious diseases. Therefore, systems capable of controlling DNA and RNA G-quadruplex structures would be useful for the modulation of various cellular events. In particular, peptides represent good candidates for targeting G-quadruplex structures, since they are easily tailored to enhance their functionality. In this work, we analyzed, by circular dichroism and synchrotron radiation circular dichroism spectroscopies, the interaction of a 25-residue peptide deriving from RHAU helicases (Rhau25) with three G-quadruplex-forming oligonucleotide sequences, in both sodium- and potassium-containing buffers, the most relevant monovalent cations in physiological conditions. The peptide displayed greater affinity for the G4 sequences adopting a parallel structure. However, it showed the ability to also interact with antiparallel or hybrid G-quadruplex structures, inducing a conformation conversion to the parallel structure. The stability of the oligonucleotide structure alone or in presence of the Rhau25 peptide was studied by temperature melting and UV denaturation experiments, and the data showed that the interaction with the peptide stabilized the conformation of oligonucleotide sequences when subjected to stress conditions.
|
Jul 2021
|
|
I22-Small angle scattering & Diffraction
|
Maddalena
Sguizzato
,
Francesca
Ferrara
,
Paolo
Mariani
,
Alessia
Pepe
,
Rita
Cortesi
,
Nicolas
Huang
,
Fanny
Simelière
,
Paola
Boldrini
,
Anna
Baldisserotto
,
Giuseppe
Valacchi
,
Elisabetta
Esposito
Diamond Proposal Number(s):
[28022]
Open Access
Abstract: Human skin is dramatically exposed to toxic pollutants such as ozone. To counteract the skin disorders induced by the air pollution, natural antioxidants such as mangiferin could be employed. A formulative study for the development of vesicular systems for mangiferin based on phosphatidylcholine and the block copolymer pluronic is described. Plurethosomes were designed for mangiferin transdermal administration and compared to ethosome and transethosome. Particularly, the effect of vesicle composition was investigated on size distribution, inner and outer morphology by photon correlation spectroscopy, small angle X-ray diffraction, and transmission electron microscopy. The potential of selected formulations as vehicles for mangiferin was studied, evaluating encapsulation efficiency and in vitro diffusion parameters by Franz cells. The mangiferin antioxidant capacity was verified by the 2,2-diphenyl-1-picrylhydrazyl assay. Vesicle size spanned between 200 and 550 nm, being influenced by phosphatidylcholine concentration and by the presence of polysorbate or pluronic. The vesicle supramolecular structure was multilamellar in the case of ethosome or plurethosome and unilamellar in the case of transethosome. A linear diffusion of mangiferin in the case of ethosome and transethosomes and a biphasic profile in the case of plurethosomes indicated the capability of multilamellar vesicles to retain the drug more efficaciously than the unilamellar ones. The antioxidant and anti-inflammatory potential effect of mangiferin against pollutants was evaluated on 3D human skin models exposed to O3. The protective effect exerted by plurethosomes and transethosomes suggests their possible application to enhance the cutaneous antioxidant defense status.
|
Jul 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[17450]
Abstract: Amorphous solid dispersions (ASDs) of class II and IV biopharmaceutics classification system drugs in water-miscible polymers are a well-recognized means of enhancing dissolution, while such dispersions in hydrophobic polymers form the basis of micro- and nanoparticulate technologies. However, drug recrystallization presents significant problems for product development, and the mechanisms and pathways involved are poorly understood. Here, we outline the use of combined differential scanning calorimetry (DSC)-synchrotron X-ray diffraction to monitor the sequential appearance of polymorphs of olanzapine (OLZ) when dispersed in a range of polymers. In a recent study (Cryst. Growth Des.2019,19, 2751–2757), we reported a new polymorph (form IV) of OLZ which crystallized from a spray-dried dispersion of OLZ in polyvinylpyrrolidone. Here, we extend our earlier study to explore OLZ dispersions in poly(lactide-co-glycolide) (PLGA), polylactide (PLA), and hydroxypropyl methyl cellulose acetate succinate (HPMCAS), with a view to identifying the sequence of form generation on heating each dispersion. While spray-dried OLZ results in the formation of crystalline form I, the spray-dried material with HPMCAS comprises an ASD, and forms I and IV are generated upon heating. PLGA and PLA result in a product which contains both amorphous OLZ and the dichloromethane solvate; upon heating, the amorphous material converts to forms I, II, and IV and the solvate to forms I and II. Our data show that it is possible to quantitatively assess not only the polymorph generation sequence but also the relative proportions as a function of temperature. Of particular note is that the sequence of form generation is significantly more complex than may be indicated by DSC data alone, with coincident generation of different polymorphs and complex interconversions as the material is heated. We argue that this may have implications not only for the mechanistic understanding of polymorph generation but also as an aid to identifying the range of polymorphic forms that may be produced by a single-drug molecule.
|
Oct 2020
|
|