|
Cate T.
O'Brien
,
Tommi
Virtanen
,
Sergii
Donets
,
James
Jennings
,
Olga
Guskova
,
Anna H.
Morrell
,
Matt
Rymaruk
,
Leena
Ruusuvirta
,
Juha
Salmela
,
Harri
Setala
,
Jens-Uwe
Sommer
,
Anthony J.
Ryan
,
Oleksandr
Mykhaylyk
Abstract: Native cellulose is insoluble in water, despite the high number of hydrogen bonding sites per chain, as molecules preferably hydrogen bond to each other, preventing its use in industrial applications. The modification of cellulose has received considerable recent attention, motivated by the move away from conventional petroleum-based, water-soluble polymers, however, a systematic analysis of the effects of modification is rare. Herein a detailed study of hydroxypropyl (HP)- and (2-hydroxypropyl) trimethylammonium chloride-modified cellulose, with degrees of substitution (DS) determined by NMR, establishes modification-property relationships. TEM, small-angle X-ray scattering and rheology demonstrated that increasing DS gradually changes the aqueous solubility, resulting in the formation of different morphologies, including micron-sized aggregates, needle-like cellulose nanoparticles (CNPs) and solvated molecules. It was found that aqueous dispersions with DSHP of 50 %, assigned to a ‘sweet spot’ in cellulose modification, are suitable for the fiber formation. It is shown that this state of the material can be easily detected by rheo-optical methods based on birefringence. Using structural analysis, molecular dynamic simulation and fiber-spinning results, it is proposed that co-existing CNPs and cellulose molecules, interacting via H-bonding, form a network which orients under shear, acting as a precursor for the fiber formation from aqueous solutions.
|
Mar 2021
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[19852, 21776]
Open Access
Abstract: We have previously reported the synthesis of thermoresponsive poly(stearyl methacrylate)-poly(benzyl methacrylate) [PSMA-PBzMA] diblock copolymer vesicles in mineral oil via polymerisation-induced self-assembly (PISA). Such vesicles undergo a vesicle-to-worm transition on heating, which provides an interesting new oil-thickening mechanism (see M. J. Derry, et al., Angew. Chem., 2017, 56, 1746–1750). In the present study, we report an unexpected reduction in dispersion viscosity when heating vesicles of approximately the same composition above a certain critical temperature. Transmission electron microscopy (TEM) studies indicate rich thermoresponsive behavior, with vesicles present at 20 °C, worms being formed at 130 °C and spheres generated at 180 °C, indicating that a worm-to-sphere transition occurs after the initial vesicle-to-worm transition. Moreover, we have also prepared a series of new thermoresponsive diblock copolymer vesicles by RAFT dispersion copolymerization of n-butyl methacrylate (BuMA) with benzyl methacrylate (BzMA) using a poly(stearyl methacrylate) precursor in mineral oil. This model system was developed to examine whether statistical copolymerization of a suitable comonomer (BuMA) could be used to tune the critical onset temperature required for the vesicle-to-worm transition. Indeed, oscillatory rheology studies confirmed that targeting membrane-forming blocks containing up to 50 mol% BuMA lowered the critical onset temperature required to induce the vesicle-to-worm transition to 109 °C, compared to 167 °C for the reference PSMA14-PBzMA125 diblock copolymer. Variable temperature small-angle X-ray scattering (SAXS) experiments confirmed a vesicle-to-worm transition, with the vesicles initially present at 20 °C being converted into worms when heated above 130 °C. Furthermore, a substantial reduction in dispersion viscosity was again observed when heating above the critical onset temperature. TEM and shear-induced polarized light imaging (SIPLI) studies indicate that linear worms are no longer present at 160 °C and 170 °C respectively, suggesting a subsequent worm-to-sphere transition. The thermal transitions studied herein proved to be irreversible on cooling on normal experimental timescales (hours).
|
Feb 2021
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[15933]
Open Access
Abstract: The rational synthesis of epoxy-functional diblock copolymer nano-objects has been achieved via RAFT aqueous emulsion polymerisation of glycidyl methacrylate (GlyMA; aqueous solubility ∼22 g dm−3 at 50 °C) by utilising relatively mild conditions (pH 7, 50 °C) to preserve the epoxy groups. High monomer conversions were achieved within 1 h when using a poly(glycerol monomethacrylate) chain transfer agent with a mean degree of polymerisation (DP) of 28, with GPC analysis indicating relatively narrow molecular weight distributions (Mw/Mn < 1.40) when targeting PGlyMA DPs up to 80. A phase diagram was constructed to identify the synthesis conditions required to access pure spheres, worms or vesicles. Transmission electron microscopy, dynamic light scattering and small-angle X-ray scattering (SAXS) studies indicated the formation of well-defined worms and vesicles when targeting relatively long PGlyMA blocks. These epoxy-functional nano-objects were derivatised via epoxy-thiol chemistry by reaction with L-cysteine in aqueous solution. Finally, an in situ SAXS study was conducted during the RAFT aqueous emulsion polymerisation of GlyMA at 50 °C to examine the nucleation and size evolution of PGMA48-PGlyMA100 diblock copolymer spheres using a bespoke stirrable reaction cell.
|
Sep 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[20494]
Abstract: This research provides a thorough study of the mechanical response of PCL scaffolds and determines their deformation micromechanisms at different scales by a combination of experimental techniques (mechanical tests, scanning electron microscopy, wide angle X-ray diffraction and small-angle X-ray scattering). Scaffolds with different fibre orientation distribution functions were manufactured and subjected to tensile loading. The macromechanical properties were dictated the by the fibre deformation and interaction in terms of fibre straightening, rotation and stretching. The stiffness and the yield strength were directly proportional to the percentage of fibres oriented with the loading direction. The gradual deformation induced a progressive fibre rotation, uncurling and stretching, showing different impact at molecular level for each configuration. The fibres aligned with the loading direction presented a homogeneous plasticity with an inherent loss of the crystal phase, meanwhile the misaligned fibres exhibited a negligible loss of crystallinity due to a predominance of the fibre rotation. The fibre plasticity triggered the macromechanical yielding of the scaffold and for high levels of plastic deformation the fibres developed macromolecular fibrils and microvoids. These findings provide the fundamental observations to develop engineering tissues with highly tunable and tailored mechanical properties for site specific in vivo applications.
|
Aug 2020
|
|
I07-Surface & interface diffraction
|
Michèle
Chevrier
,
Jurgen
Kesters
,
Judith E.
Houston
,
Niko
Van Den Brande
,
Sylvain
Chambon
,
Sébastien
Richeter
,
Bruno
Van Mele
,
Thomas
Arnold
,
Ahmad
Mehdi
,
Roberto
Lazzaroni
,
Philippe
Dubois
,
Rachel C.
Evans
,
Wouter
Maes
,
Sébastien
Clément
Diamond Proposal Number(s):
[13868]
Abstract: Phosphonium‐based polythiophene conjugated polyelectrolytes (CPEs) with three different counterions (dodecylsulfate (DS), octylsulfate (OS) and perfluorooctylsulfonate (PFOS)) are synthesized to determine how the nature of the counterion affects the thermal properties, the self‐assembly in thin films and the performance as cathode interfacial layer in polymer solar cells (PSCs). The counterion has a significant effect on the thermal properties of the CPEs, affecting both their glass transition and crystalline behavior. Grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) studies also indicate that changing the nature of the counterion influences the microstructural organization in thin films (face‐on vs . edge‐on orientation). The affinity of the CPEs with the underlying photoactive layer in PSCs is highly correlated with the counterion species. Finally, in addition to an increase of the power conversion efficiency of ~15% when using these CPEs as cathode interfacial layers in PSCs, a higher device stability is noted, as compared to a reference device with a calcium interlayer.
|
Jul 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[14892]
Abstract: Poly(stearyl methacrylate)-poly(2-hydroxypropyl methacrylate) (PSMA-PHPMA) diblock copolymer nanoparticles are synthesized via reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) in mineral oil at 90 °C. The relatively short PSMA precursor (mean degree of polymerization = 9) remains soluble in mineral oil, whereas the growing PHPMA block quickly becomes insoluble, resulting in polymerization-induced self-assembly (PISA). Relatively high HPMA monomer conversions (≥98%) were achieved within 70 min as confirmed by in situ 1H NMR spectroscopy studies, while gel permeation chromatography (GPC) analyses indicated high blocking efficiencies and relatively narrow molecular weight distributions (Mw/Mn ≤ 1.37) for all PISA syntheses. Depending on the precise synthesis conditions, this PISA formulation can produce diblock copolymer spheres, worms or vesicles; a pseudo-phase diagram has been constructed to enable reproducible targeting of each pure phase. Thus this is a rare example of the use of a commercially available polar monomer for PISA syntheses in non-polar media that offers access to the full range of copolymer morphologies. The resulting nanoparticles were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), oscillatory rheology and small-angle X-ray scattering (SAXS). Interestingly, PSMA9-PHPMA70 worms undergo an unusual (partial) worm-to-vesicle transition at elevated temperature. Finally, PSMA9-PHPMA50 spheres were evaluated as putative Pickering emulsifiers. Using lower water volume fractions produced water-in-oil (w/o) emulsions after high shear homogenization, as expected. However, using higher water volume fractions, shear rates or copolymer concentrations favored the formation of w/o/w Pickering double emulsions.
|
Jun 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[17255]
Abstract: A series of poly(stearyl methacrylate)–poly(benzyl methacrylate) (PSMA–PBzMA) diblock copolymer nano-objects has been synthesized via reversible addition–fragmentation chain-transfer (RAFT) dispersion polymerization in n-dodecane at 20 wt%. This polymerization-induced self-assembly (PISA) formulation was modified by the incorporation of an anionic monomer, tetradodecylammonium 3-sulfopropyl methacrylate ([NDod4]+[SPMA]−) into the oil-insoluble PBzMA block. According to the literature (M. J. Derry, et al., Chem. Sci., 2016, 7, 5078–5090), PSMA18–PBzMA diblock copolymers only form spheres using this formulation for any core degree of polymerization. Unexpectedly, incorporating just a small fraction (<6 mol%) of [NDod4]+[SPMA]− comonomer into the structure-directing block resulted in the formation of non-spherical diblock copolymer nano-objects, including pure worm-like and vesicular morphologies. However, only spherical micelles could be formed using a longer PSMA34 stabilizer. These diblock copolymer nano-objects were characterized by transmission electron microscopy, small-angle X-ray scattering, and dynamic light scattering. The bulky nature of the ionic comonomer appears to make it possible to avoid the kinetically-trapped sphere morphology. This study reveals a new approach for tuning the morphology of diblock copolymer nano-objects in non-polar media.
|
Apr 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[16500]
Abstract: Simultaneous synchrotron small- and wide-angle X-ray scattering (SAXS/WAXS) was used to follow the crystalline morphology evolution of poly-L- lactic acid (PLLA) during uniaxial deformation at various draw temperatures (Td). The mechanical behaviour of PLLA, was found to be strongly dependent on Td. 2D SAXS/WAXS data taken during the draw showed that at low Tds cavitation and voiding occurred and the initial crystallites underwent ‘overdrawing’ where they slip and are partially destroyed. SEM confirmed that surface voiding and cavitation had occurred at Td = 60 and 65 °C but was absent at higher Tds. During the draw, no long-range macromolecular lamellar structure was seen in the SAXS, but small crystallites of the disordered α′ crystal form of PLLA were observed in the WAXS at all Tds. The PLLA samples were then step annealed in a second processing stage (post-draw) to develop the oriented crystalline lamellar structure and increase the amount of the stable α crystalline form. SAXS/WAXS data showed that a highly oriented lamellar stack macrostructure developed on annealing, with increased crystallite size and crystallinity at all Tds. Furthermore, step annealing drove the crystalline transition in all samples from the disordered α′ crystal form to the stable α crystal form. Therefore, varying pre- and post-processing parameters can significantly influence the mechanical properties, orientation, crystalline morphology and crystal phase transition of the final PLLA material.
|
Apr 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[20409]
Abstract: Through charge-driven interfacial complexation, we produced millimetre-sized spheroidal hydrogels (SH) with a core-shell structure allowing long term stability in aqueous media. The SH were fabricated by extruding, drop-wise, a cationic cellulose nanofibril (CCNF) dispersion into an oppositely charged polyacrylic acid (PAA) bath. The SH have a solid-like CCNF-PAA shell, acting as a semi-permeable membrane, and a liquid-like CCNF suspension in the core. Swelling behaviour of the SH was dependent on the osmotic pressure of the ageing media. Swelling could be supressed by increasing the ionic strength of the media as this enhanced interfibrillar interactions and thus strengthened the outer gel membrane. We further validated a potential application of SH as re-usable matrixes for glucose oxidase (GOx) entrapment, where the SH work as “microreactors” from which substrate and product are freely able to migrate, through the SH shell whilst avoiding enzyme leakage.
|
Feb 2020
|
|
B21-High Throughput SAXS
|
Abstract: Polymerisation-induced self-assembly (PISA) has become widely recognised as a versatile and efficient strategy to prepare well-defined diblock copolymer nanoparticles in a range of solvents. In this article, we report the synthesis of anionic, sterically-stabilised, sulfonate-functional diblock copolymer nanoparticles via PISA using a reversible addition–fragmentation chain-transfer (RAFT) polymerisation formulation. Anionic poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) macromolecular chain-transfer agents (macro-CTAs) were synthesised via RAFT solution polymerisation followed by chain-extension with benzyl methacrylate (BzMA) in alcohol/water mixtures to form PKSPMA–PBzMA nanoparticles. The influence of solvent quality on the formation of these nanoparticles was investigated by judiciously changing the alcohol/water ratio, the alcohol co-solvent (ethanol or methanol) and relative copolymer composition. The resulting diblock copolymer nanoparticles were analysed by dynamic light scattering (DLS), transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and aqueous electrophoresis. The results demonstrated that nanoparticles with controllable diameters for a fixed copolymer composition can be prepared by altering the co-solvent composition. More specifically, when using different ratios of ethanol/water or methanol/water, the nanoparticle diameter can be tuned from approximately 20 to 200 nm with fixed copolymer composition. This indicates that the solvency of both the stabiliser and core-forming block has a marked impact on both the aggregation of polymer chains during self-assembly and the resulting nanoparticles. Additionally, these nanoparticles remain colloidally stable and highly anionic over a wide pH range from 4 to 10, as judged by aqueous electrophoresis.
|
Feb 2020
|
|