I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[26779]
Open Access
Abstract: NTF2-like proteins are compact α + β fold domains with cone-shaped architectures and internal pockets, making them attractive scaffolds for the de novo design of small-molecule binders and enzymes. However, creating ligand-binding pockets often compromises folding stability, posing a key challenge in de novo protein design. Here, we introduce strategies to stabilize NTF2-like domains while preserving pocket geometry and accessibility. By expanding the hydrophobic core through computationally designed α-helical subdomains or homodimer interfaces buttressing the β-sheet's convex face, we enhance structural stability without blocking pocket access on the concave face. Biochemical, biophysical, and crystallographic analyses confirm that the designed buttressing elements maintain the intended fold and support diverse, well-formed hydrophobic ligand-binding pockets with increased preorganization. Our results demonstrate that structural stabilization and pocket optimization need not be mutually exclusive, providing a generalizable approach to create robust ligand-binding proteins. This framework addresses a major bottleneck in protein design and should fuel the development of NTF2-based scaffolds for applications in small-molecule biosensing and enzyme catalysis.
|
Nov 2025
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[25413]
Open Access
Abstract: In directed evolution, enzyme activity is improved in successive generations of laboratory evolution, which can be described by a simple stepwise climb toward a peak in the fitness landscape. In a naive model of evolution, it can be assumed that each enzyme variant along this path is in a single, well-defined state that differs slightly from the previous one. We analyzed the structural changes in mutants of the β-lactamase BlaC from Mycobacterium tuberculosis obtained via directed evolution for increased ceftazidime hydrolysis activity. Crystal structures of three successive mutants only show an increase in the dynamics of a loop that lines the active site (Ω-loop), enabling better access of the large substrate. However, NMR spectra of wild type and nine mutants of different branches of the directed evolution experiment show a much more diverse and complex picture of the conformational effects. Many mutants show micro-millisecond dynamics for certain regions and most show peak doubling, indicative of two or more conformations being populated. Thus, the straightforward climb to increased ceftazidime activity in the fitness landscape masks a complex trajectory in the conformational landscape, emphasizing the complex and epistatic interplay that single mutations can have on the structure and dynamics of enzymes.
|
Nov 2025
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[25108]
Open Access
Abstract: The Gram-negative Shewanellaceae family is well known for its ability to transfer catabolically derived electrons to extracellular terminal electron acceptors through electron conduits that permeate the outer membrane. The primary conduit is MtrCAB, a trimeric porin-cytochrome complex that contains the cell surface exposed decaheme cytochrome MtrC. This donates electrons to extracellular substrates, including OmcA, soluble metals, organic electron shuttles, and insoluble metal oxides. However, it is not clear whether this broad substrate specificity requires specific sites for binding and reduction, or whether reduction occurs through non-specific interactions near exposed hemes on the cytochrome surface. Shewanella oneidensis MtrC is composed of four domains, with the hemes closely packed and distributed evenly between domains II and IV. The domains are arranged to allow electron transport across the cytochrome via interdomain electron transfer, but the significance of this conserved feature is not understood. Here we use site-directed mutagenesis to generate an MtrC variant that is comprised only of domains I and II (MtrCDI,II). The properties of this MtrCDI,II are effectively identical to domains I and II of full-length MtrC. Whole-cell assays revealed that S. oneidensis cells replacing full-length MtrC with MtrCDI,II had significantly lower rates of OmcA, flavin mononucleotide, and Fe(III) citrate reduction. Our results demonstrate that MtrC domains III and IV contain sites for association of specific substrates, enabling the reduction of extracellular electron acceptors in S. oneidensis.
|
Aug 2025
|
|
I03-Macromolecular Crystallography
|
Abstract: Outer membrane β-barrel proteins (OMPs) are channels found in the outer membranes of Gram-negative bacteria characterized by a stable and diverse barrel architecture, which has made them attractive for nanopore sensing applications. Here, we systematically investigated the feasibility of expanding outer membrane protein G (OmpG) from its native 14-stranded β-barrel to an enhanced conductance variant by independently duplicating each of its seven hairpin units and inserting them downstream of their endogenous positions. Most combinations did not increase pore diameter, but duplication of the terminal seventh hairpin exhibited a rare population of pores with enhanced conductance, suggesting barrel enlargement. Further engineering efforts to optimize the terminal β-turn sequence have resulted in up to 50% of pores with increased conductance. Importantly, the enlarged pores retained the sensing functionality of the original scaffold, highlighting the potential of this approach for developing β-barrel OMP sensors with tunable dimensions.
|
Jul 2025
|
|
I03-Macromolecular Crystallography
|
Yasushi
Kondo
,
Caitlin
Hatton
,
Robert
Cheng
,
Matilde
Trabuco
,
Hannah
Glover
,
Quentin
Bertrand
,
Fabienne
Stierli
,
Hans-Peter
Seidel
,
Thomas
Mason
,
Sivathmika
Sarma
,
Friedjof
Tellkamp
,
Michal
Kepa
,
Florian
Dworkowski
,
Pedram
Mehrabi
,
Michael
Hennig
,
Joerg
Standfuss
Diamond Proposal Number(s):
[34035]
Open Access
Abstract: Metabotropic glutamate receptor 5 (mGlu5) is implicated in various neurodegenerative disorders, making it an attractive drug target. Although several ligand-bound crystal structures of mGlu5 exist, their apo-state crystal structure remains unknown. Here, we study mGlu5 structural changes using the photochemical affinity switch, alloswitch-1, in combination with time-resolved freeze-trapping methods. By X-ray crystallography, we demonstrated that isomerizing alloswitch-1 leads to its release from the binding pocket within a few seconds. The apo structure, determined at a resolution of 2.9 Å, is more comparable to the inactive state than to the active state. Our approach presents an accessible alternative to time-resolved serial crystallography for capturing thermodynamically stable transient intermediates. The mGlu5 apo-structure provides molecular insights into the ligand-free allosteric pocket, which can guide the design of new allosteric modulators.
|
Jul 2025
|
|
I04-Macromolecular Crystallography
|
Open Access
Abstract: We have recently demonstrated a novel anaerobic NADH-dependent haem breakdown reaction, which is carried out by a range of haemoproteins. The Yersinia enterocolitica protein, HemS, is the focus of further research presented in the current paper. Using conventional experimental methods, bioinformatics, and energy landscape theory (ELT), we provide new insight into the mechanism of the novel breakdown process. Of particular interest is the behavior of a double phenylalanine gate, which opens and closes according to the relative situations of haem and NADH within the protein pocket. This behavior suggests that the double phe-gate fulfills a regulatory role within the pocket, controlling the access of NADH to haem. Additionally, stopped-flow spectroscopy results provide kinetic comparisons between the wild-type and the selected mutants. We also present a fully resolved crystal structure for the F104AF199A HemS monomer, including its extensive loop, the first such structure to be completely resolved for HemS or any of its close homologues. The energy landscapes approach provided key information regarding the gating strategy employed by HemS, compensating for current limitations with conventional biophysical and molecular dynamics approaches. We propose that ELT become more widely used in the field, particularly in the investigation of the dynamics and interactions of weak-binding ligands, and for gating features, within protein cavities.
|
Feb 2025
|
|
I24-Microfocus Macromolecular Crystallography
|
Maria Elena
Laugieri
,
Immacolata
Speciale
,
Ana
Gimeno
,
Sicheng
Lin
,
Brock W.
Byers
,
Ana
Poveda
,
Reyes
Núñez‐franco
,
Idoia
Iturrioz
,
María J.
Moure
,
Gonzalo
Jiménez-Osés
,
Irene
Russo‐krauss
,
Anna
Notaro
,
James L.
Van Etten
,
Todd L.
Lowary
,
Jesús
Jimenez-Barbero
,
Cristina
De Castro
,
Michela
Tonetti
,
Adriana L.
Rojas
Diamond Proposal Number(s):
[20113]
Open Access
Abstract: Protein A075L is a β-xylosyltransferase that participates in producing the core of the N-glycans found in VP54, the major viral capsid protein of Paramecium bursaria chlorella virus-1 (PBCV-1). In this study, we present an X-ray crystallographic analysis of the apo form of A075L, along with its complexes with the sugar donor and with a trisaccharide acceptor. The protein structure shows a typical GT-B folding, with two Rossmann-like fold domains, in which the acceptor substrate binds to the N-terminal region, and the nucleotide-sugar donor binds to the C-terminal region. We propose that the catalytic mechanism follows a direct displacement SN2-like reaction, where Asp73 serves as a catalytic base that deprotonates the incoming nucleophile of the acceptor, facilitating direct displacement of the UDP with the inversion of the anomeric configuration of the acceptor without metal ion dependence, while the interactions with side chains of Arg158 and Arg208 stabilize the developing negative charge. Using isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and molecular dynamics simulations, the catalytic activity and specificity of this enzyme have been unraveled.
|
Dec 2024
|
|
I04-Macromolecular Crystallography
|
Abstract: In Escherichia coli AcrB is a major multidrug exporter, which confers the bacterium resistance to many antibiotics with diverse structural and chemical proprieties. Studies have identified three possible tunnels (or channels) within AcrB that different substrates use before reaching the distal pocket, from which they are subsequently extruded. Recently, we reported that mutations in the AcrB gate loop may affect the conformational change kinetics involved in substrate export rather than directly affecting molecular interactions with this loop, and we highlighted the distinct export tunnel preferences between erythromycin and doxorubicin. To further understand the gate loop's role in AcrB's export activity and the rationale behind substrate preferences among the three possible export tunnels, namely tunnel-1, -2, and -3, we investigated the structural and functional effects of several single and multiple mutations in the gate loop of AcrB. Our findings indicate that all three tunnels are energetically favorable for the substrates studied, with the majority forming more hydrogen bonds in any tunnel compared to the distal pocket. Moreover, our experimental and computational data revealed that some substrates with high molecular similarity exhibited different export tunnel preferences, as strongly suggested by their MIC values. To explain this unexpected outcome, we propose a generalized explanation that the conformational change kinetics in AcrB is substrate-dependent.
|
Dec 2024
|
|
B21-High Throughput SAXS
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[25108, 32728]
Open Access
Abstract: Decades of research describe myriad redox enzymes that contain cofactors arranged in tightly packed chains facilitating rapid and controlled intra-protein electron transfer. Many such enzymes participate in extracellular electron transfer (EET), a process which allows microorganisms to conserve energy in anoxic environments by exploiting mineral oxides and other extracellular substrates as terminal electron acceptors. In this work, we describe the properties of the triheme cytochrome PgcA from Geobacter sulfurreducens. PgcA has been shown to play an important role in EET but is unusual in containing three CXXCH heme binding motifs that are separated by repeated (PT)x motifs, suggested to enhance binding to mineral surfaces. Using a combination of structural, electrochemical, and biophysical techniques, we experimentally demonstrate that PgcA adopts numerous conformations stretching as far as 180 Å between the ends of domains I and III, without a tightly packed cofactor chain. Furthermore, we demonstrate a distinct role for its domain III as a mineral reductase that is recharged by domains I and II. These findings show PgcA to be the first of a new class of electron transfer proteins, with redox centers separated by some nanometers but tethered together by flexible linkers, facilitating electron transfer through a tethered diffusion mechanism rather than a fixed, closely packed electron transfer chain.
|
Nov 2024
|
|
I03-Macromolecular Crystallography
|
Open Access
Abstract: Crystallography at low resolution must determine the atomic model from less experimental observations, which is challenging in the absence of a model. In addition, model bias is more severe when independent experimental data are scarce. Our methods solve the phase problem by combining the location of accurate model fragments using Phaser with density modification and interpretation of the resulting maps using SHELXE. From a partial, correct structure, the density modification process and the stereochemical constraints draw the rest of the structure, validating the result. This same principle is now exploited at low resolution. Coiled coils are important, ubiquitous structures but notoriously difficult to phase and to predict. Both correct solutions and incorrect ones are poorly discriminated by the crystallographic figures of merit as long as helices are correctly oriented. We incorporate coiled-coil verification, designed to set up competing, incompatible structural hypotheses to probe both the results and establish the power of the data to discriminate them. Efficiency of coiled-coil phasing and validation in test cases from 3 to 4 Å is demonstrated in ARCIMBOLDO_LITE, placing single helices, and in ARCIMBOLDO_SHREDDER, with fragments derived from AlphaFold models. SHELXE tracing at low resolution has been enhanced, maintaining its local character but extending the environment assessment. For non-helical structures, verification is demonstrated in the fragment location process. Its use is exemplified with the solution of the VSR1 structure at 3.5 Å, depending on LLG optimization and the emergence of new features in the electron density. Relying on verification, we have extended the use of the ARCIMBOLDO software to low resolution.
|
Sep 2024
|
|