I03-Macromolecular Crystallography
|
Rob
Barringer
,
Alice E.
Parnell
,
Aleix
Lafita
,
Vivian
Monzon
,
Catherine R.
Back
,
Mariusz
Madej
,
Jan
Potempa
,
Angela H.
Nobbs
,
Steven G.
Burston
,
Alex
Bateman
,
Paul R.
Race
Diamond Proposal Number(s):
[23269]
Abstract: Bacterial fibrillar adhesins are specialised extracellular polypeptides that promote the attachment of bacteria to the surfaces of other cells or materials. Adhesin-mediated interactions are critical for the establishment and persistence of stable bacterial populations within diverse environmental niches and are important determinants of virulence. The fibronectin (Fn) binding fibrillar adhesin CshA, and its paralogue CshB, play important roles in host colonisation by the oral commensal and opportunistic pathogen Streptococcus gordonii. As paralogues are often catalysts for functional diversification, we have probed the early stages of structural and functional divergence in Csh proteins by determining the X-ray crystal structure of the CshB adhesive domain NR2 and characterising its Fn binding properties in vitro. Despite sharing a common fold, CshB_NR2 displays an ~1.7-fold reduction in Fn binding affinity relative to CshA_NR2. This correlates with reduced electrostatic charge in the Fn binding cleft. Complementary bioinformatic studies reveal that homologues of CshA/B_NR2 domains are widely distributed in both Gram-positive and Gram-negative bacteria, where they are found housed within functionally cryptic multi-domain polypeptides. Our findings are consistent with the classification of Csh adhesins and their relatives as members of the recently defined Polymer Adhesin Domain (PAD) family of bacterial proteins.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[13467]
Abstract: Bacteria are equipped with a diverse set of regulatory tools that allow them to quickly adapt to their environment. The RimK system allows for Pseudomonas spp. to adapt through post-transcriptional regulation by altering the ribosomal subunit RpsF. RimK is found in a wide range of bacteria with a conserved amino acid sequence, however the genetic context and the role of this protein is highly diverse. By solving and comparing the structures of RimK homologues from two related but functionally divergent systems, we uncovered key structural differences that likely contribute to the different activity levels of each of these homologues. Moreover, we were able to clearly resolve the active site of this protein for the first time, resolving binding of the glutamate substrate. This work advances our understanding of how subtle differences in protein sequence and structure can have profound effects on protein activity, which can in turn result in widespread mechanistic changes.
|
Sep 2022
|
|
I03-Macromolecular Crystallography
|
Leila T.
Alexander
,
Rosalba
Lepore
,
Andriy
Kryshtafovych
,
Athanasios
Adamopoulos
,
Markus
Alahuhta
,
Ann M.
Arvin
,
Yannick J.
Bomble
,
Bettina
Böttcher
,
Cécile
Breyton
,
Valerio
Chiarini
,
Naga Babu
Chinnam
,
Wah
Chiu
,
Krzysztof
Fidelis
,
Rhys
Grinter
,
Gagan D.
Gupta
,
Marcus D.
Hartmann
,
Christopher S.
Hayes
,
Tatjana
Heidebrecht
,
Andrea
Ilari
,
Andrzej
Joachimiak
,
Youngchang
Kim
,
Romain
Linares
,
Andrew L.
Lovering
,
Vladimir V.
Lunin
,
Andrei N.
Lupas
,
Cihan
Makbul
,
Karolina
Michalska
,
John
Moult
,
Prasun K.
Mukherjee
,
William
Nutt
,
Stefan L.
Oliver
,
Anastassis
Perrakis
,
Lucy
Stols
,
John A.
Tainer
,
Maya
Topf
,
Susan E.
Tsutakawa
,
Mauricio
Valdivia‐delgado
,
Torsten
Schwede
Open Access
Abstract: The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.
|
Dec 2021
|
|
|
Abstract: We report here an assessment of the model refinement category of the 14th round of Critical Assessment of Structure Prediction (CASP14). As before, predictors submitted up to five ranked refinements, along with associated residue-level error estimates, for targets that had a wide range of starting quality. The ability of groups to accurately rank their submissions and to predict coordinate error varied widely. Overall only four groups out-performed a “naïve predictor” corresponding to resubmission of the starting model. Among the top groups there are interesting differences of approach and in the spread of improvements seen: some methods are more conservative, others more adventurous. Some targets were “double-barrelled” for which predictors were offered a high-quality AlphaFold 2 (AF2)-derived prediction alongside another of lower quality. The AF2-derived models were largely unimprovable, many of their apparent errors being found to reside at domain and, especially, crystal lattice contacts. Refinement is shown to have a mixed impact overall on structure-based function annotation methods to predict nucleic acid binding, spot catalytic sites and dock protein structures.
|
Jul 2021
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19190, 17167]
Abstract: Symmetric proteins are currently of interest as they allow creation of larger assemblies and facilitate the incorporation of metal ions in the larger complexes. Recently this was demonstrated by the biomineralization of the cadmium‐chloride nanocrystal via the Pizza designer protein. However, the mechanism behind this formation remained unclear. Here, we set out to investigate the mechanism driving the formation of this nanocrystal via truncation, mutation, and circular permutations. In addition, the interaction of other biologically relevant metal ions with these symmetric proteins to form larger symmetric complexes was also studied. The formation of the initial nanocrystal is shown to originate from steric strain, where His 58 induces a different rotameric conformation on His 73, thereby distorting an otherwise perfect planar ring of alternating cadmium and chlorine ions, resulting in the smallest nanocrystal. Similar highly symmetric complexes were also observed for the other biological relevant metal ions. However, the flexibility of the coordinating histidine residues allows each metal ion to adopt its preferred geometry leading to either monomeric or dimeric β‐propeller units, where the metal ions are located at the interface between both propeller units. These results demonstrate that symmetric proteins are not only interesting to generate larger assemblies, but are also the perfect scaffold to create more complex metal based assemblies. Such metal protein assemblies may then find applications in bionanotechnology or biocatalysis.
|
Mar 2021
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[22637]
Abstract: Conversion of 10‐hydroxygeraniol to 10‐oxogeranial is a crucial step in iridoid biosynthesis. This reaction is catalyzed by a zinc‐dependent alcohol dehydrogenase, 10‐hydroxygeraniol dehydrogenase, belonging to the family of medium‐chain dehydrogenase/reductase (MDR). Here, we report the crystal structures of a novel 10‐hydroxygeraniol dehydrogenase from Catharanthus roseus in its apo and nicotinamide adenine dinucleotide phosphate (NADP+) bound forms. Structural analysis and docking studies reveal how subtle conformational differences of loops L1, L2, L3, and helix α9' at the orifice of the catalytic site confer differential activity of the enzyme toward various substrates, by modulating the binding pocket shape and volume. The present study, first of its kind, provides insights into the structural basis of substrate specificity of MDRs specific to linear substrates. Furthermore, comparison of apo and NADP+ bound structures suggests that the enzyme adopts open and closed states to facilitate cofactor binding.
|
Mar 2020
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Rosalba
Lepore
,
Andriy
Kryshtafovych
,
Markus
Alahuhta
,
Harshul A.
Veraszto
,
Yannick J.
Bomble
,
Joshua C.
Bufton
,
Alex N.
Bullock
,
Cody
Caba
,
Hongnan
Cao
,
Owen R.
Davies
,
Ambroise
Desfosses
,
Matthew
Dunne
,
Krzysztof
Fidelis
,
Celia W.
Goulding
,
Manickam
Gurusaran
,
Irina
Gutsche
,
Christopher J.
Harding
,
Marcus D.
Hartmann
,
Christopher S.
Hayes
,
Andrzej
Joachimiak
,
Petr G.
Leiman
,
Peter
Loppnau
,
Andrew L.
Lovering
,
Vladimir V.
Lunin
,
Karolina
Michalska
,
Ignacio
Mir‐sanchis
,
Alok
Mitra
,
John
Moult
,
George N.
Phillips Jr
,
Daniel
Pinkas
,
Phoebe A.
Rice
,
Yufeng
Tong
,
Maya
Topf
,
Jonathan D.
Walton
,
Torsten
Schwede
Diamond Proposal Number(s):
[14692]
Open Access
Abstract: The functional and biological significance of selected CASP13 targets are described by the authors of the structures. The structural biologists discuss the most interesting structural features of the target proteins and assess whether these features were correctly reproduced in the predictions submitted to the CASP13 experiment.
|
Sep 2019
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[13467]
Open Access
Abstract: Glycoside phosphorylases (GPs) with specificity for β‐(1 → 3)‐gluco‐oligosaccharides are potential candidate biocatalysts for oligosaccharide synthesis. GPs with this linkage specificity are found in two families thus far—glycoside hydrolase family 94 (GH94) and the recently discovered glycoside hydrolase family 149 (GH149). Previously, we reported a crystallographic study of a GH94 laminaribiose phosphorylase with specificity for disaccharides, providing insight into the enzyme's ability to recognize its' sugar substrate/product. In contrast to GH94, characterized GH149 enzymes were shown to have more flexible chain length specificity, with preference for substrate/product with higher degree of polymerization. In order to advance understanding of the specificity of GH149 enzymes, we herein solved X‐ray crystallographic structures of GH149 enzyme Pro_7066 in the absence of substrate and in complex with laminarihexaose (G6). The overall domain organization of Pro_7066 is very similar to that of GH94 family enzymes. However, two additional domains flanking its catalytic domain were found only in the GH149 enzyme. Unexpectedly, the G6 complex structure revealed an oligosaccharide surface binding site remote from the catalytic site, which, we suggest, may be associated with substrate targeting. As such, this study reports the first structure of a GH149 phosphorylase enzyme acting on β‐(1 → 3)‐gluco‐oligosaccharides and identifies structural elements that may be involved in defining the specificity of the GH149 enzymes.
|
May 2019
|
|
|
Abstract: Our aim in CASP12 was to improve our Template-Based Modeling (TBM) methods through better model selection, accuracy self-estimate (ASE) scores and refinement. To meet this aim, we developed two new automated methods, which we used to score, rank, and improve upon the provided server models. Firstly, the ModFOLD6_rank method, for improved global Quality Assessment (QA), model ranking and the detection of local errors. Secondly, the ReFOLD method for fixing errors through iterative QA guided refinement. For our automated predictions we developed the IntFOLD4-TS protocol, which integrates the ModFOLD6_rank method for scoring the multiple-template models that were generated using a number of alternative sequence-structure alignments. Overall, our selection of top models and ASE scores using ModFOLD6_rank was an improvement on our previous approaches. In addition, it was worthwhile attempting to repair the detected errors in the top selected models using ReFOLD, which gave us an overall gain in performance. According to the assessors' formula, the IntFOLD4 server ranked 3rd/5th (average Z-score > 0.0/–2.0) on the server only targets, and our manual predictions (McGuffin group) ranked 1st/2nd (average Z-score > −2.0/0.0) compared to all other groups.
|
Aug 2017
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Abstract: Bioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2-thiolase-like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cβ2-Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T. brucei and causes a 5-fold reduction of de novo sterol biosynthesis from glucose- and acetate-derived acetyl-CoA. Fluorescence analyses of EGFP-tagged TbSLP expressed in the parasite located the TbSLP in the mitochondrion. The crystal structure of TbSLP (refined at 1.75 Å resolution) confirms that TbSLP has the canonical dimeric thiolase fold. In addition, the structures of the TbSLP-acetoacetyl-CoA (1.90 Å) and TbSLP-malonyl-CoA (2.30 Å) complexes reveal that the two oxyanion holes of the thiolase active site are preserved. TbSLP binds malonyl-CoA tightly (Kd 90 µM), acetoacetyl-CoA moderately (Kd 0.9 mM) and acetyl-CoA and CoA very weakly. TbSLP possesses low malonyl-CoA decarboxylase activity. Altogether, the data show that TbSLP is a mitochondrial enzyme involved in lipid metabolism.
|
Aug 2016
|
|