I24-Microfocus Macromolecular Crystallography
|
Manmohan
Sharma
,
Nipun
Malhotra
,
Manickam
Yogavel
,
Karl
Harlos
,
Bruno
Melillo
,
Eamon
Comer
,
Arthur
Gonse
,
Suhel
Parvez
,
Branko
Mitasev
,
Francis G.
Fang
,
Stuart L.
Schreiber
,
Amit
Sharma
Diamond Proposal Number(s):
[19946]
Open Access
Abstract: The inhibition of Plasmodium cytosolic phenylalanine tRNA-synthetase (cFRS) by a novel series of bicyclic azetidines has shown the potential to prevent malaria transmission, provide prophylaxis, and offer single-dose cure in animal models of malaria. To date, however, the molecular basis of Plasmodium cFRS inhibition by bicyclic azetidines has remained unknown. Here, we present structural and biochemical evidence that bicyclic azetidines are competitive inhibitors of L-Phe, one of three substrates required for the cFRS-catalyzed aminoacylation reaction that underpins protein synthesis in the parasite. Critically, our co-crystal structure of a PvcFRS-BRD1389 complex shows that the bicyclic azetidine ligand binds to two distinct sub-sites within the PvcFRS catalytic site. The ligand occupies the L-Phe site along with an auxiliary cavity and traverses past the ATP binding site. Given that BRD1389 recognition residues are conserved amongst apicomplexan FRSs, this work lays a structural framework for the development of drugs against both Plasmodium and related apicomplexans.
|
Jan 2021
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Alice J.
Bochel
,
Christopher
Williams
,
Airlie J.
Mccoy
,
Hans-jürgen
Hoppe
,
Ashley J.
Winter
,
Ryan D.
Nicholls
,
Karl
Harlos
,
E. Yvonne
Jones
,
Imre
Berger
,
A. Bassim
Hassan
,
Matthew P.
Crump
Diamond Proposal Number(s):
[8423]
Abstract: The cation-independent mannose 6-phosphate (M6P)/Insulin-like growth factor-2 receptor (CI-MPR/IGF2R) is an ∼300 kDa transmembrane protein responsible for trafficking M6P-tagged lysosomal hydrolases and internalizing IGF2. The extracellular region of the CI-MPR has 15 homologous domains, including M6P-binding domains (D) 3, 5, 9, and 15 and IGF2-binding domain 11. We have focused on solving the first structures of human D7–10 within two multi-domain constructs, D9–10 and D7–11, and provide the first high-resolution description of the high-affinity M6P-binding D9. Moreover, D9 stabilizes a well-defined hub formed by D7–11 whereby two penta-domains intertwine to form a dimeric helical-type coil via an N-glycan bridge on D9. Remarkably the D7–11 structure matches an IGF2-bound state of the receptor, suggesting this may be an intrinsically stable conformation at neutral pH. Interdomain clusters of histidine and proline residues may impart receptor rigidity and play a role in structural transitions at low pH.
|
Sep 2020
|
|
B21-High Throughput SAXS
I02-Macromolecular Crystallography
|
Ondřej
Skořepa
,
Samuel
Pazicky
,
Barbora
Kalousková
,
Jan
Bláha
,
Celeste
Abreu
,
Tomáš
Ječmen
,
Michal
Rosůlek
,
Alexander
Fish
,
Arthur
Sedivy
,
Karl
Harlos
,
Jan
Dohnalek
,
Tereza
Skálová
,
Ondřej
Vaněk
Diamond Proposal Number(s):
[10627]
Open Access
Abstract: NKp30 is one of the main human natural killer (NK) cell activating receptors used in directed immunotherapy. The oligomerization of the NKp30 ligand binding domain depends on the length of the C-terminal stalk region, but our structural knowledge of NKp30 oligomerization and its role in signal transduction remains limited. Moreover, ligand binding of NKp30 is affected by the presence and type of N-glycosylation. In this study, we assessed whether NKp30 oligomerization depends on its N-glycosylation. Our results show that NKp30 forms oligomers when expressed in HEK293S GnTI− cell lines with simple N-glycans. However, NKp30 was detected only as monomers after enzymatic deglycosylation. Furthermore, we characterized the interaction between NKp30 and its best-studied cognate ligand, B7-H6, with respect to glycosylation and oligomerization, and we solved the crystal structure of this complex with glycosylated NKp30, revealing a new glycosylation-induced mode of NKp30 dimerization. Overall, this study provides new insights into the structural basis of NKp30 oligomerization and explains how the stalk region and glycosylation of NKp30 affect its ligand affinity. This furthers our understanding of the molecular mechanisms involved in NK cell activation, which is crucial for the successful design of novel NK cell-based targeted immunotherapeutics.
|
Jul 2020
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[10627]
Open Access
Abstract: Semaphorin ligands interact with plexin receptors to contribute to functions in the development of myriad tissues including neurite guidance and synaptic organisation within the nervous system. Cell‐attached semaphorins interact in trans with plexins on opposing cells, but also in cis on the same cell. The interplay between trans and cis interactions is crucial for the regulated development of complex neural circuitry, but the underlying molecular mechanisms are uncharacterised. We have discovered a distinct mode of interaction through which the Drosophila semaphorin Sema1b and mouse Sema6A mediate binding in cis to their cognate plexin receptors. Our high‐resolution structural, biophysical and in vitro analyses demonstrate that monomeric semaphorins can mediate a distinctive plexin binding mode. These findings suggest the interplay between monomeric vs dimeric states has a hereto unappreciated role in semaphorin biology, providing a mechanism by which Sema6s may balance cis and trans functionalities.
|
Jun 2020
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14744]
Abstract: Scaffold modules known as aminoacyl-tRNA synthetase (aaRS)-interacting multifunctional proteins (AIMPs), such as AIMP1/p43, AIMP2/p38 and AIMP3/p18, are important in driving the assembly of multi-aaRS (MARS) complexes in eukaryotes. Often, AIMPs contain an N-terminal glutathione S-transferase (GST)-like domain and a C-terminal OB-fold tRNA-binding domain. Recently, the apicomplexan-specific Plasmodium falciparum p43 protein (Pfp43) has been annotated as an AIMP and its tRNA binding, tRNA import and membrane association have been characterized. The crystal structures of both the N- and C-terminal domains of the Plasmodium vivax p43 protein (Pvp43), which is an ortholog of Pfp43, have been resolved. Analyses reveal the overall oligomeric structure of Pvp43 and highlight several notable features that show Pvp43 to be a soluble, cytosolic protein. The dimeric assembly of the N-terminal GST-like domain of Pvp43 differs significantly from canonical GST dimers, and it is tied to the C-terminal tRNA-binding domain via a linker region. This work therefore establishes a framework for dissecting the additional roles of p43 orthologs in eukaryotic multi-protein MARS complexes.
|
Feb 2020
|
|
I02-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19946]
Open Access
Abstract: The emergent zoonotic henipaviruses, Hendra, and Nipah are responsible for frequent and fatal disease outbreaks in domestic animals and humans. Specificity of henipavirus attachment glycoproteins (G) for highly species-conserved ephrin ligands underpins their broad host range and is associated with systemic and neurological disease pathologies. Here, we demonstrate that Cedar virus (CedV)—a related henipavirus that is ostensibly nonpathogenic—possesses an idiosyncratic entry receptor repertoire that includes the common henipaviral receptor, ephrin-B2, but, distinct from pathogenic henipaviruses, does not include ephrin-B3. Uniquely among known henipaviruses, CedV can use ephrin-B1 for cellular entry. Structural analyses of CedV-G reveal a key region of molecular specificity that directs ephrin-B1 utilization, while preserving a universal mode of ephrin-B2 recognition. The structural and functional insights presented uncover diversity within the known henipavirus receptor repertoire and suggest that only modest structural changes may be required to modulate receptor specificities within this group of lethal human pathogens.
|
Dec 2019
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[10627]
Abstract: The heme-based oxygen sensor protein AfGcHK is a globin-coupled histidine kinase in the soil bacterium Anaeromyxobacter sp. Fw109-5. Its C-terminal functional domain exhibits autophosphorylation activity induced by oxygen binding to the heme Fe(II) complex located in the oxygen-sensing N-terminal globin domain. A detailed understanding of the signal transduction mechanisms in heme-containing sensor proteins remains elusive. Here, we investigated the role of the globin domain’s dimerization interface in signal transduction in AfGcHK. We present a crystal structure of a monomeric imidazole-bound AfGcHK globin domain at 1.8 Å resolution, revealing that the helices of the wild-type globin dimer are under tension and suggesting that Tyr-15 plays a role in both this tension and the globin domain’s dimerization. Biophysical experiments revealed that whereas the isolated wild-type globin domain is dimeric in solution, the Y15A and Y15G variants in which Tyr-15 is replaced with Ala or Gly, respectively, are monomeric. Additionally, we found that although the dimerization of the full-length protein is preserved via the kinase domain dimerization interface in all variants, full-length AfGcHK variants bearing the Y15A or Y15G substitutions lack enzymatic activity. The combined structural and biophysical results presented here indicate that Tyr-15 plays a key role in the dimerization of the globin domain of AfGcHK and that globin domain dimerization is essential for internal signal transduction and autophosphorylation in this protein. These findings provide critical insights into the signal transduction mechanism of the histidine kinase AfGcHK from Anaeromyxobacter.
|
Dec 2019
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14744, 10627]
Open Access
Abstract: Semaphorin ligands and their plexin receptors are one of the major cell guidance factors that trigger localised changes in the cytoskeleton. Binding of semaphorin homodimer to plexin brings two plexins in close proximity which is a prerequisite for plexin signalling. This model appears to be too simplistic to explain the complexity and functional versatility of these molecules. Here, we determine crystal structures for all members of Drosophila class 1 and 2 semaphorins. Unlike previously reported semaphorin structures, Sema1a, Sema2a and Sema2b show stabilisation of sema domain dimer formation via a disulfide bond. Unexpectedly, our structural and biophysical data show Sema1b is a monomer suggesting that semaphorin function may not be restricted to dimers. We demonstrate that semaphorins can form heterodimers with members of the same semaphorin class. This heterodimerization provides a potential mechanism for cross-talk between different plexins and co-receptors to allow fine-tuning of cell signalling.
|
Aug 2019
|
|
I02-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
|
Kamel
El Omari
,
Sai
Li
,
Abhay
Kotecha
,
Thomas S.
Walter
,
Eduardo A.
Bignon
,
Karl
Harlos
,
Pentti
Somerharju
,
Felix
De Haas
,
Daniel K.
Clare
,
Mika
Molin
,
Felipe
Hurtado
,
Mengqiu
Li
,
Jonathan
Grimes
,
Dennis H.
Bamford
,
Nicole D.
Tischler
,
Juha T.
Huiskonen
,
Dave I.
Stuart
,
Elina
Roine
Diamond Proposal Number(s):
[10627]
Open Access
Abstract: Lipid membrane fusion is an essential function in many biological processes. Detailed mechanisms of membrane fusion and the protein structures involved have been mainly studied in eukaryotic systems, whereas very little is known about membrane fusion in prokaryotes. Haloarchaeal pleomorphic viruses (HRPVs) have a membrane envelope decorated with spikes that are presumed to be responsible for host attachment and membrane fusion. Here we determine atomic structures of the ectodomains of the 57-kDa spike protein VP5 from two related HRPVs revealing a previously unreported V-shaped fold. By Volta phase plate cryo-electron tomography we show that VP5 is monomeric on the viral surface, and we establish the orientation of the molecules with respect to the viral membrane. We also show that the viral membrane fuses with the host cytoplasmic membrane in a process mediated by VP5. This sheds light on protein structures involved in prokaryotic membrane fusion.
|
Feb 2019
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14744]
Abstract: cAMP response element binding protein 3 (CREB3) is an endoplasmic reticulum (ER) membrane‐bound transcription factor, which belongs to the basic leucine zipper (bZIP) superfamily of eukaryotic transcription factors. CREB3 plays a role in the ER‐stress induced unfolded protein response (UPR) and is a multifunctional cellular factor implicated in a number of biological processes including cell proliferation and migration, tumour suppression, and immune‐related gene expression. To gain structural insights into the transcription factor, we determined the crystal structure of the conserved bZIP domain of chicken CREB3 (chCREB3) to a resolution of 3.95Å. The X‐ray structure provides evidence that chCREB3 can form a stable homodimer. The chCREB3 bZIP has a structured, pre‐formed DNA binding region, even in the absence of DNA, a feature that could potentially enhance both the DNA binding specificity and affinity of chCREB3. Significantly, the homodimeric bZIP possesses an intermolecular disulphide bond that connects equivalent cysteine residues of the parallel helices in the leucine zipper region. This disulphide bond in the hydrophobic core of the bZIP may increase the stability of the homodimer under oxidising conditions. Moreover, sequence alignment of bZIP sequences from chicken, human and mouse reveals only members of the CREB3 subfamily contain this cysteine residue, indicating it could act as a redox‐sensor. Taken together, these results suggest activity of these transcription factors may be redox‐regulated and they may be activated in response to oxidative stress.
|
Jan 2019
|
|