I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Sulfoquinovose (SQ) is the anionic headgroup of the ubiquitous plant sulfolipid, sulfoquinovosyl diacylglycerol (SQDG). SQDG can undergo delipidation to give sulfoquinovosyl glycerol (SQGro) and further glycoside cleavage to give SQ, which can be metabolized through microbial sulfoglycolytic pathways. Exogenous SQDG metabolites are imported into bacteria through membrane spanning transporter proteins. The recently discovered sulfoglycolytic sulfoquinovose monooxygenase (sulfo-SMO) pathway in Agrobacterium tumefaciens features a periplasmic sulfoquinovosyl glycerol binding protein, SmoF, and an ATP-binding cassette (ABC) transporter. Here, we use X-ray crystallography, differential scanning fluorimetry and isothermal titration calorimetry to study SQ glycoside recognition by SmoF. This work reveals that in addition to SQGro, SmoF can also bind SQ, a simple methyl glycoside and even a short-chain SQDG analogue. Molecular recognition of these substrates is achieved through conserved interactions with the SQ-headgroup together with more plastic interactions with the aglycones. This suggests that the solute binding protein of A. tumefaciens, and related SQ-binding proteins from other sulfoglycolytic pathways, can provide their host organisms direct access to most of the SQ metabolites known to be produced by phototrophs.
|
Mar 2022
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Mahima
Sharma
,
James P.
Lingford
,
Marija
Petricevic
,
Alexander J. D.
Snow
,
Yunyang
Zhang
,
Michael A.
Järvå
,
Janice W.-Y.
Mui
,
Nichollas E.
Scott
,
Eleanor C.
Saunders
,
Runyu
Mao
,
Ruwan
Epa
,
Bruna M.
Da Silva
,
Douglas E. V.
Pires
,
David B.
Ascher
,
Malcolm J.
Mcconville
,
Gideon J.
Davies
,
Spencer J.
Williams
,
Ethan D.
Goddard-Borger
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Catabolism of sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose), the ubiquitous sulfosugar produced by photosynthetic organisms, is an important component of the biogeochemical carbon and sulfur cycles. Here, we describe a pathway for SQ degradation that involves oxidative desulfurization to release sulfite and enable utilization of the entire carbon skeleton of the sugar to support the growth of the plant pathogen Agrobacterium tumefaciens. SQ or its glycoside sulfoquinovosyl glycerol are imported into the cell by an ATP-binding cassette transporter system with an associated SQ binding protein. A sulfoquinovosidase hydrolyzes the SQ glycoside and the liberated SQ is acted on by a flavin mononucleotide-dependent sulfoquinovose monooxygenase, in concert with an NADH-dependent flavin reductase, to release sulfite and 6-oxo-glucose. An NAD(P)H-dependent oxidoreductase reduces the 6-oxo-glucose to glucose, enabling entry into primary metabolic pathways. Structural and biochemical studies provide detailed insights into the recognition of key metabolites by proteins in this pathway. Bioinformatic analyses reveal that the sulfoquinovose monooxygenase pathway is distributed across Alpha- and Betaproteobacteria and is especially prevalent within the Rhizobiales order. This strategy for SQ catabolism is distinct from previously described pathways because it enables the complete utilization of all carbons within SQ by a single organism with concomitant production of inorganic sulfite.
|
Jan 2022
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9948]
Open Access
Abstract: Imine reductases (IREDs) offer biocatalytic routes to chiral amines and have a natural preference for the NADPH cofactor. In previous work, we reported enzyme engineering of the ( R )-selective IRED from Myxococcus stipitatus (( R )-IRED- Ms _V8) yielding a NADH-dependent variant with high catalytic efficiency. However, no IRED with NADH specificity and ( S )-selectivity in asymmetric reductions has yet been reported. Herein, we applied semi-rational enzyme engineering to switch the selectivity of ( R )-IRED- Ms _V8. The quintuple variant A241V/H242Y/N243D/V244Y/A245L showed reverse stereopreference in the reduction of the cyclic imine 2-methylpyrroline compared to the wild-type and afforded the ( S )-amine product with >99% conversion and 91% enantiomeric excess. We also report the crystal-structures of the NADPH-dependent ( R )-IRED- Ms wild-type enzyme and the NADH-dependent ( R )-IRED- Ms _V8 variant and molecular dynamics (MD) simulations to rationalize the inverted stereoselectivity of the quintuple variant.
|
Oct 2021
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9948]
Open Access
Abstract: Cytochrome P450 CYP153AM.aq from Marinobacter aquaeolei serves as a model enzyme for the terminal (ω-) hydroxylation of medium- to long-chain fatty acids. We have engineered this enzyme using different mutagenesis approaches based on structure-sequence-alignments within the 3DM database and crystal structures of CYP153AM.aq and a homologue CYP153AP.sp. Applying these focused mutagenesis strategies and site-directed saturation mutagenesis, we created a variant that ω-hydroxylates octanoic acid. The M.aqRLT variant exhibited 151-fold improved catalytic efficiency and showed strongly improved substrate binding (25-fold reduced Km compared to the wild type). We then used molecular dynamics simulations to gain deeper insights into the dynamics of the protein. We found the tunnel modifications and the two loop regions showing greatly reduced flexibility in the engineered variant were the main features responsible for stabilizing the enzyme–substrate complex and enhancing the catalytic efficiency. Additionally, we showed that a previously known fatty acid anchor (Q129R) interacts significantly with the ligand to hold it in the reactive position, thereby boosting the activity of the variant M.aqRLT toward octanoic acid. The study demonstrates the significant effects of both substrate stabilization and the impact of enzyme flexibility on catalytic efficiency. These results could guide the future engineering of enzymes with deeply buried active sites to increase or even establish activities toward yet unknown types of substrates.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Mahima
Sharma
,
Palika
Abayakoon
,
Ruwan
Epa
,
Yi
Jin
,
James P.
Lingford
,
Tomohiro
Shimada
,
Masahiro
Nakano
,
Janice W.-Y.
Mui
,
Akira
Ishihama
,
Ethan D.
Goddard-Borger
,
Gideon J.
Davies
,
Spencer J.
Williams
Diamond Proposal Number(s):
[13587, 18598, 24948]
Open Access
Abstract: The sulfosugar sulfoquinovose (SQ) is produced by essentially all photosynthetic organisms on Earth and is metabolized by bacteria through the process of sulfoglycolysis. The sulfoglycolytic Embden–Meyerhof–Parnas pathway metabolizes SQ to produce dihydroxyacetone phosphate and sulfolactaldehyde and is analogous to the classical Embden–Meyerhof–Parnas glycolysis pathway for the metabolism of glucose-6-phosphate, though the former only provides one C3 fragment to central metabolism, with excretion of the other C3 fragment as dihydroxypropanesulfonate. Here, we report a comprehensive structural and biochemical analysis of the three core steps of sulfoglycolysis catalyzed by SQ isomerase, sulfofructose (SF) kinase, and sulfofructose-1-phosphate (SFP) aldolase. Our data show that despite the superficial similarity of this pathway to glycolysis, the sulfoglycolytic enzymes are specific for SQ metabolites and are not catalytically active on related metabolites from glycolytic pathways. This observation is rationalized by three-dimensional structures of each enzyme, which reveal the presence of conserved sulfonate binding pockets. We show that SQ isomerase acts preferentially on the β-anomer of SQ and reversibly produces both SF and sulforhamnose (SR), a previously unknown sugar that acts as a derepressor for the transcriptional repressor CsqR that regulates SQ-utilization. We also demonstrate that SF kinase is a key regulatory enzyme for the pathway that experiences complex modulation by the metabolites SQ, SLA, AMP, ADP, ATP, F6P, FBP, PEP, DHAP, and citrate, and we show that SFP aldolase reversibly synthesizes SFP. This body of work provides fresh insights into the mechanism, specificity, and regulation of sulfoglycolysis and has important implications for understanding how this biochemistry interfaces with central metabolism in prokaryotes to process this major repository of biogeochemical sulfur.
|
Feb 2021
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9948, 13587]
Open Access
Abstract: Chiral primary amines are important intermediates in the synthesis of pharmaceutical compounds. Fungal reductive aminases (RedAms) are NADPH-dependent dehydrogenases that catalyse reductive amination of a range of ketones with short-chain primary amines supplied in an equimolar ratio to give corresponding secondary amines. Herein we describe structural and biochemical characterisation as well as synthetic applications of two RedAms from Neosartorya spp. (NfRedAm and NfisRedAm) that display a distinctive activity amongst fungal RedAms, namely a superior ability to use ammonia as the amine partner. Using these enzymes, we demonstrate the synthesis of a broad range of primary amines, with conversions up to >97% and excellent enantiomeric excess. Temperature dependent studies showed that these homologues also possess greater thermal stability compared to other enzymes within this family. Their synthetic applicability is further demonstrated by the production of several primary and secondary amines with turnover numbers (TN) up to 14[thin space (1/6-em)]000 as well as continous flow reactions, obtaining chiral amines such as (R)-2-aminohexane in space time yields up to 8.1 g L−1 h−1. The remarkable features of NfRedAm and NfisRedAm highlight their potential for wider synthetic application as well as expanding the biocatalytic toolbox available for chiral amine synthesis.
|
May 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9948]
Open Access
Abstract: The Pictet–Spengler reaction is a valuable route to 1,2,3,4-tetrahydro-β-carboline (THBC) and isoquinoline scaffolds found in many important pharmaceuticals. Strictosidine synthase (STR) catalyzes the Pictet–Spengler condensation of tryptamine and the aldehyde secologanin to give (S)-strictosidine as a key intermediate in indole alkaloid biosynthesis. STRs also accept short-chain aliphatic aldehydes to give enantioenriched alkaloid products with up to 99% ee STRs are thus valuable asymmetric organocatalysts for applications in organic synthesis. The STR catalysis of reactions of small aldehydes gives an unexpected switch in stereopreference, leading to formation of the (R)-products. Here we report a rationale for the formation of the (R)-configured products by the STR enzyme from Ophiorrhiza pumila (OpSTR) using a combination of X-ray crystallography, mutational, and molecular dynamics (MD) studies. We discovered that short-chain aldehydes bind in an inverted fashion compared to secologanin leading to the inverted stereopreference for the observed (R)-product in those cases. The study demonstrates that the same catalyst can have two different productive binding modes for one substrate but give different absolute configuration of the products by binding the aldehyde substrate differently. These results will guide future engineering of STRs and related enzymes for biocatalytic applications.
|
Jan 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18598]
Abstract: 2,3-Dihydroxypropanesulfonate (DHPS) is a major sulfur species in the biosphere. One important route for the production of DHPS is sulfoglycolytic catabolism of sulfoquinovose (SQ) through the Embden-Meyerhof-Parnas (sulfo-EMP) pathway. SQ is a sulfonated carbohydrate present in plant and cyanobacterial sulfolipids (sulfoquinovosyl diacylglyceride and its metabolites) and is biosynthesised globally at a rate of around 10 billion tonnes per annum. The final step in the bacterial sulfo-EMP pathway involves reduction of sulfolactaldehyde (SLA) to DHPS, catalysed by an NADH-dependent SLA reductase. Based on conserved sequence motifs, we assign SLA reductase to the β-hydroxyacid dehydrogenase (β-HAD) family, an example of a β-HAD enzyme that acts on a sulfonic acid substrate, rather than a carboxylic acid. We report crystal structures of the SLA reductase YihU from E. coli K-12 in its apo and cofactor-bound states, as well as a ternary complex YihU•NADH•DHPS with the cofactor and product bound in the active site. Conformational flexibility observed in these structures, combined with kinetic studies, confirm a sequential mechanism and provide evidence for dynamic domain movements that occur during catalysis. The ternary complex structure reveals a conserved sulfonate pocket in SLA reductase that recognises the sulfonate oxygens through hydrogen bonding to Asn174, Ser178, and the backbone amide of Arg123, along with an ordered water molecule. This triad of residues distinguishes these enzymes from classical β-HADs that act on carboxylate substrates. A comparison of YihU crystal structures with close structural homologues within the β-HAD family highlights key differences in the overall domain organization and identifies a peptide sequence that is predictive of SLA reductase activity.
|
Jan 2020
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9948]
Abstract: Cytochrome P450 monooxygenases (P450s) play crucial roles in the cell metabolism and provide an unsurpassed diversity of catalyzed reactions. Here, we report the identification and biochemical characterization of two P450s from Arthrobacter sp., a gram-positive organism known to degrade the opium alkaloid papaverine. Combining phylogenetic and genomic analysis suggested physiological roles for P450s in metabolism, and revealed potential gene clusters with redox partners facilitating the reconstitution of the P450 activities in vitro. CYP1232F1 catalyzes the para demethylation of 3,4-dimethoxyphenylacetic acid to homovanillic acid while CYP1232A24 continues demethylation to 3,4-dihydroxyphenylacetic acid. Interestingly, the latter enzyme is also able to perform both demethylation steps with preference for the meta position. The crystal structure of CYP1232A24, which shares only 29% identity to previous published structures of P450s helped to rationalize the preferred demethylation specificity for the meta position and also the broader substrate specificity profile. In addition to the detailed characterization of the two P450s using their physiological redox partners, we report the construction of a highly-active whole-cell E. coli biocatalyst expressing CYP1232A24, which formed up to 1.77 g l−1 3,4-dihydroxyphenylacetic acid. Our results revealed the P450s’ role in the metabolic pathway of papaverine enabling further investigation and application of these biocatalysts.
|
Feb 2019
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9948]
Open Access
Abstract: One of the major challenges in chemical synthesis is the selective oxyfunctionalization of non‐activated C‐H bonds, which can be enabled by biocatalysis using cytochrome P450 monooxygenases. In this study, we report on the characterization of the versatile CYP109Q5 from Chondromyces apiculatus DSM436, which is able to functionalize a wide range of substrates (terpenes, steroids and drugs), including the ring of β‐ionone in non‐allylic positions. The crystal structure of CYP109Q5 revealed flexibility within the active site pocket that permitted the accommodation of bulky substrates, and enabled a structure‐guided approach to engineering the enzyme. Some variants of CYP109Q5 displayed a switch in selectivity towards the non‐allylic positions of β‐ionone, allowing the simultaneous production of 2‐ and 3‐hydroxy‐β‐ionone, which are chemically challenging to synthesize and are important precursors for carotenoid synthesis. An efficient whole‐cell system finally enabled the production of up to 0.5 g l−1 hydroxylated products of β‐ionone; this system can be applied to product identification in further biotransformations. Overall, CYP109Q5 proved to be highly evolvable and active. The studies in this work demonstrate that, using rational mutagenesis, the highly versatile CYP109Q5 generalist can be progressively evolved to be an industrially valuable specialist for the synthesis of specific products.
|
Dec 2018
|
|