|
Open Access
Abstract: Whether or not specific ion effects determine the charge storage properties of aqueous graphene and graphite-based supercapacitors remains a highly debated topic. In this work we present a multiscale quantum mechanics – classical molecular dynamics (QMMD) investigation of aqueous mono- and divalent salt electrolytes in contact with fully polarizable charged graphene sheets. By computing both the electrochemical double layer (EDL) and quantum capacitance we observe a constant electrode specific capacitance with cationic radii and charge. Counterintuitively, we determine that a switch in the cation adsorption mechanism from inner to outer Helmholtz layers leads to negligible changes to the EDL capacitance, this appears to be due to the robust electronic structure of the graphene electrodes. However, the ability of ions (such as K+) with a relatively low hydration free energy to penetrate the inner Helmholtz plane and adsorb directly on the electrode surface is found to slow their diffusion parallel to the interface. Ions in the outer Helmholtz layer are found to have higher diffusivity at the surface due to their position in ion channels between water layers. Our results show that surface effects such as the surface polarization and the partial dehydration and local structuring of ions on the surface underpin the behaviour of cations at the interface and add a vital new perspective on trends in ion mobilities seen under confinement.
|
Mar 2023
|
|
|
Abstract: Research on actinide materials, both basic and applied, has been greatly advanced by the general techniques available from high-intensity photon beams from x-ray synchrotron sources. The most important single reason is that such x-ray sources can work with minute (e.g., microgram) samples, and at this level the radioactive hazards of actinides are significantly reduced. The form and encapsulation procedures used for different techniques are discussed, followed by the basic theory for interpreting the results. To demonstrate the potential of synchrotron radiation techniques for the study of lattice and electronic structure, hybridization effects, multipolar order, and lattice dynamics in actinide materials, a selection of x-ray diffraction, resonant elastic x-ray scattering, x-ray magnetic circular dichroism, resonant and nonresonant inelastic scattering, dispersive inelastic x-ray scattering, and conventional and resonant photoemission experiments are reviewed.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
|
Aiste
Dijokaite-Guraliuc
,
Raksha
Das
,
Daming
Zhou
,
Helen M.
Ginn
,
Chang
Liu
,
Helen M. E.
Duyvesteyn
,
Jiandong
Huo
,
Rungtiwa
Nutalai
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Thushan I.
De Silva
,
Megan
Plowright
,
Thomas A. H.
Newman
,
Hailey
Hornsby
,
Alexander J.
Mentzer
,
Donal
Skelly
,
Thomas G.
Ritter
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Cornelius
Roemer
,
Thomas P.
Peacock
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: In November 2021 Omicron BA.1, containing a raft of new spike mutations emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or SARS-CoV-2 infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional RBD amino-acid substitutions compared to BA.2. We describe a panel of 25 potent mAbs generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titre of vaccine or BA.1, BA.2 or BA.4/5 immune serum.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[22891, 18136]
Abstract: Among several proteins participating in the olfactory perception process of insects, Odorant Binding Proteins (OBPs) are today considered valid targets for the discovery of compounds that interfere with their host-detection behavior. The 3D structures of Anopheles gambiae mosquito AgamOBP1 in complex with the known synthetic repellents DEET and Icaridin have provided valuable information on the structural characteristics that govern their selective binding.
However, no structure of a plant-derived repellent bound to an OBP has been available until now. Herein, we present the novel three-dimensional crystal structures of AgamOBP5 in complex with two natural phenolic monoterpenoid repellents, Carvacrol and Thymol, and the MPD molecule.
Structural analysis revealed that both monoterpenoids occupy a binding site (Site-1) by adopting two alternative conformations. An additional Carvacrol was also bound to a secondary site (Site-2) near the central cavity entrance. A protein-ligand hydrogen-bond network supplemented by van der Waals interactions spans the entire binding cavity, bridging α4, α6, and α3 helices and stabilizing the overall structure.
Fluorescence competition and Differential Scanning Calorimetry experiments verified the presence of two binding sites and the stabilization effect on AgamOBP5. While Carvacrol and Thymol bind to Site-1 with equal affinity in the submicromolar range, they exhibit a significantly lower and distinct binding capacity for Site-2 with Kd's of ~7 μΜ and ~18 μΜ, respectively.
Finally, a comparison of AgamOBP5 complexes with the AgamOBP4-Indole structure revealed that variations of ligand-interacting aminoacids such as A109T, I72M, A112L, and A105T cause two structurally similar and homologous proteins to display different binding specificities.
|
Mar 2023
|
|
E02-JEM ARM 300CF
|
William J.
Cull
,
Stephen T.
Skowron
,
Ruth
Hayter
,
Craig T.
Stoppiello
,
Graham A.
Rance
,
Johannes
Biskupek
,
Zakhar R.
Kudrynskyi
,
Zakhar D.
Kovalyuk
,
Christopher S.
Allen
,
Thomas J.
Slater
,
Ute
Kaiser
,
Amalia
Patanè
,
Andrei N.
Khlobystov
Diamond Proposal Number(s):
[25251]
Open Access
Abstract: Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide InxSey by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of InxSey we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of InxSey. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm InxSey, namely InSe or β-In2Se3, can be prepared. Additionally, in situ AC-TEM heating experiments reveal that encapsulated β-In2Se3 undergoes a phase change to γ-In2Se3 above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components.
|
Mar 2023
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Jack E. N.
Swallow
,
Elizabeth S.
Jones
,
Ashley R.
Head
,
Joshua S.
Gibson
,
Roey
Ben David
,
Michael W.
Fraser
,
Matthijs A.
Van Spronsen
,
Shaojun
Xu
,
Georg
Held
,
Baran
Eren
,
Robert S
Weatherup
Diamond Proposal Number(s):
[25834]
Open Access
Abstract: The reactions of H2, CO2, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS) spectroscopy bridging pressures from 0.1 mbar to 1 bar. We find that the order of gas dosing can critically affect the catalyst chemical state, with the Cu catalyst maintained in a metallic state when H2 is introduced prior to the addition of CO2. Only on increasing the CO2 partial pressure is CuO formation observed that coexists with metallic Cu. When only CO2 is present, the surface oxidizes to Cu2O and CuO, and the subsequent addition of H2 partially reduces the surface to Cu2O without recovering metallic Cu, consistent with a high kinetic barrier to H2 dissociation on Cu2O. The addition of CO to the gas mixture is found to play a key role in removing adsorbed oxygen that otherwise passivates the Cu surface, making metallic Cu surface sites available for CO2 activation and subsequent conversion to CH3OH. These findings are corroborated by mass spectrometry measurements, which show increased H2O formation when H2 is dosed before rather than after CO2. The importance of maintaining metallic Cu sites during the methanol synthesis reaction is thereby highlighted, with the inclusion of CO in the gas feed helping to achieve this even in the absence of ZnO as the catalyst support.
|
Mar 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
|
Mar 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[25120]
Open Access
Abstract: The development of multielectron redox-active cathode materials is a top priority for achieving high energy density with long cycle life in the next-generation secondary battery applications. Triggering anion redox activity is regarded as a promising strategy to enhance the energy density of polyanionic cathodes for Li/Na-ion batteries. Herein, K2Fe(C2O4)2 is shown to be a promising new cathode material that combines metal redox activity with oxalate anion (C2O42–) redox. This compound reveals specific discharge capacities of 116 and 60 mAh g–1 for sodium-ion batterie (NIB) and lithium-ion batterie (LIB) cathode applications, respectively, at a rate of 10 mA g–1, with excellent cycling stability. The experimental results are complemented by density functional theory (DFT) calculations of the average atomic charges.
|
Mar 2023
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[18786]
Open Access
Abstract: The crystallization of a new series of A-site substituted lanthanum ferrite materials (La1–xREx)FeO3 was explored by the hydrothermal method at 240 °C, for rare earth (RE) = Nd, Sm, Gd, Ho, Er, Yb, and Y, with 0 ≤ x ≤ 1. The effect of elemental substitution on the morphological, structural, and magnetic properties of the materials was studied using high-resolution powder X-ray diffraction, energy dispersive spectroscopy (EDS) on the scanning electron microscope, Raman spectroscopy, and SQUID magnetometry. If the radius of the La3+ and the substituent ions is similar, such as for Nd3+, Sm3+, and Gd3+, homogeneous solid solutions are formed, with the orthorhombic GdFeO3-type structure, and a continuous evolution of Raman spectra with composition and distinct magnetic behavior from the end members. When the radius difference between substituents and La3+ is large, such as for Ho3+, Er3+, Yb3+, and Y3+, then instead of forming solid solutions, crystallization in separate phases is found. However, low levels of element mixing are found and intergrowths of segregated regions give composite particles. In this case, the Raman spectra and magnetic behavior are characteristic of mixtures of phases, while EDS shows distinctive elemental segregation. A-site replacement induces an evolution in the crystallite shape with an increasing amount of substituent ions and this is most evident for RE = Y from cube-shaped crystals seen for LaFeO3 to multipodal crystals for (La1–xYx)FeO3, providing evidence for a phase-separation-driven evolution of morphology.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Mona M.
Katariya
,
Matthew
Snee
,
Richard B.
Tunnicliffe
,
Madeline E.
Kavanagh
,
Helena I. M.
Boshoff
,
Cecilia N.
Amadi
,
Colin W.
Levy
,
Andrew W.
Munro
,
Chris
Abell
,
David
Leys
,
Anthony G.
Coyne
,
Kirsty J.
Mclean
Diamond Proposal Number(s):
[17773, 24447]
Open Access
Abstract: Mycobacterium tuberculosis (Mtb) was responsible for approximately 1.6 million deaths in 2021. With the emergence of extensive drug resistance, novel therapeutic agents are urgently needed, and continued drug discovery efforts required. Host-derived lipids such as cholesterol support Mtb growth, and are also suspected to function in immunomodulation, with links to persistence and immune evasion. Mtb cytochrome P450 (CYP) enzymes facilitate key steps in lipid catabolism and thus present potential targets for inhibition. Here we present a series of compounds based on an ethyl 5-(pyridin-4-yl)-1H-indole-2-carboxylate pharmacophore which bind strongly to both Mtb cholesterol oxidases CYP125 and CYP142. Using a structure-guided approach, combined with biophysical characterization, compounds with micromolar range in-cell activity against clinically relevant drug-resistant isolates were obtained. These will support further development of much-needed additional treatment options and provide routes to probe the role of CYP125 and CYP142 in Mtb pathogenesis.
|
Mar 2023
|
|