|
Abstract: Research on actinide materials, both basic and applied, has been greatly advanced by the general techniques available from high-intensity photon beams from x-ray synchrotron sources. The most important single reason is that such x-ray sources can work with minute (e.g., microgram) samples, and at this level the radioactive hazards of actinides are significantly reduced. The form and encapsulation procedures used for different techniques are discussed, followed by the basic theory for interpreting the results. To demonstrate the potential of synchrotron radiation techniques for the study of lattice and electronic structure, hybridization effects, multipolar order, and lattice dynamics in actinide materials, a selection of x-ray diffraction, resonant elastic x-ray scattering, x-ray magnetic circular dichroism, resonant and nonresonant inelastic scattering, dispersive inelastic x-ray scattering, and conventional and resonant photoemission experiments are reviewed.
|
Mar 2023
|
|
|
Open Access
Abstract: Whether or not specific ion effects determine the charge storage properties of aqueous graphene and graphite-based supercapacitors remains a highly debated topic. In this work we present a multiscale quantum mechanics – classical molecular dynamics (QMMD) investigation of aqueous mono- and divalent salt electrolytes in contact with fully polarizable charged graphene sheets. By computing both the electrochemical double layer (EDL) and quantum capacitance we observe a constant electrode specific capacitance with cationic radii and charge. Counterintuitively, we determine that a switch in the cation adsorption mechanism from inner to outer Helmholtz layers leads to negligible changes to the EDL capacitance, this appears to be due to the robust electronic structure of the graphene electrodes. However, the ability of ions (such as K+) with a relatively low hydration free energy to penetrate the inner Helmholtz plane and adsorb directly on the electrode surface is found to slow their diffusion parallel to the interface. Ions in the outer Helmholtz layer are found to have higher diffusivity at the surface due to their position in ion channels between water layers. Our results show that surface effects such as the surface polarization and the partial dehydration and local structuring of ions on the surface underpin the behaviour of cations at the interface and add a vital new perspective on trends in ion mobilities seen under confinement.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
|
Aiste
Dijokaite-Guraliuc
,
Raksha
Das
,
Daming
Zhou
,
Helen M.
Ginn
,
Chang
Liu
,
Helen M. E.
Duyvesteyn
,
Jiandong
Huo
,
Rungtiwa
Nutalai
,
Piyada
Supasa
,
Muneeswaran
Selvaraj
,
Thushan I.
De Silva
,
Megan
Plowright
,
Thomas A. H.
Newman
,
Hailey
Hornsby
,
Alexander J.
Mentzer
,
Donal
Skelly
,
Thomas G.
Ritter
,
Nigel
Temperton
,
Paul
Klenerman
,
Eleanor
Barnes
,
Susanna J.
Dunachie
,
Cornelius
Roemer
,
Thomas P.
Peacock
,
Neil G.
Paterson
,
Mark A.
Williams
,
David R.
Hall
,
Elizabeth E.
Fry
,
Juthathip
Mongkolsapaya
,
Jingshan
Ren
,
David I.
Stuart
,
Gavin R.
Screaton
Diamond Proposal Number(s):
[27009]
Open Access
Abstract: In November 2021 Omicron BA.1, containing a raft of new spike mutations emerged and quickly spread globally. Intense selection pressure to escape the antibody response produced by vaccines or SARS-CoV-2 infection then led to a rapid succession of Omicron sub-lineages with waves of BA.2 then BA.4/5 infection. Recently, many variants have emerged such as BQ.1 and XBB, which carry up to 8 additional RBD amino-acid substitutions compared to BA.2. We describe a panel of 25 potent mAbs generated from vaccinees suffering BA.2 breakthrough infections. Epitope mapping shows potent mAb binding shifting to 3 clusters, 2 corresponding to early-pandemic binding hotspots. The RBD mutations in recent variants map close to these binding sites and knock out or severely knock down neutralization activity of all but 1 potent mAb. This recent mAb escape corresponds with large falls in neutralization titre of vaccine or BA.1, BA.2 or BA.4/5 immune serum.
|
Mar 2023
|
|
|
Open Access
Abstract: We studied the impact of achiral substituents on the chiral supramolecular architectures of diketopyrrolo[3,4-c]pyrrole–1,2,3-1H-triazole (DPP) dyes. We decorated the same chiral DPP motif with substituent groups on the nitrogen atoms of the lactam moiety: the hydrophobic n-octyl alkyl chain, the hydrophilic triethylene glycol (TEG) chain and the thermo-cleavable t-butoxycarbonyl (t-Boc) carbamate group. In spite of identical conjugated chromophore and chiral appendage, in aggregated form the three dyes displayed profoundly different optical, chiroptical, electrochemical and thermal features. ECD measurements revealed differences in the aggregation modes, which would be inaccessible by most other techniques. We found strong chiroptical features, which would have major implications in the context of chiral organic opto-electronics and in the development of other highly innovative technological applications.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[22891, 18136]
Abstract: Among several proteins participating in the olfactory perception process of insects, Odorant Binding Proteins (OBPs) are today considered valid targets for the discovery of compounds that interfere with their host-detection behavior. The 3D structures of Anopheles gambiae mosquito AgamOBP1 in complex with the known synthetic repellents DEET and Icaridin have provided valuable information on the structural characteristics that govern their selective binding.
However, no structure of a plant-derived repellent bound to an OBP has been available until now. Herein, we present the novel three-dimensional crystal structures of AgamOBP5 in complex with two natural phenolic monoterpenoid repellents, Carvacrol and Thymol, and the MPD molecule.
Structural analysis revealed that both monoterpenoids occupy a binding site (Site-1) by adopting two alternative conformations. An additional Carvacrol was also bound to a secondary site (Site-2) near the central cavity entrance. A protein-ligand hydrogen-bond network supplemented by van der Waals interactions spans the entire binding cavity, bridging α4, α6, and α3 helices and stabilizing the overall structure.
Fluorescence competition and Differential Scanning Calorimetry experiments verified the presence of two binding sites and the stabilization effect on AgamOBP5. While Carvacrol and Thymol bind to Site-1 with equal affinity in the submicromolar range, they exhibit a significantly lower and distinct binding capacity for Site-2 with Kd's of ~7 μΜ and ~18 μΜ, respectively.
Finally, a comparison of AgamOBP5 complexes with the AgamOBP4-Indole structure revealed that variations of ligand-interacting aminoacids such as A109T, I72M, A112L, and A105T cause two structurally similar and homologous proteins to display different binding specificities.
|
Mar 2023
|
|
I10-Beamline for Advanced Dichroism
|
Zihan
Li
,
Shanshan
Liu
,
Jiabao
Sun
,
Jiayi
Zhu
,
Yanhui
Chen
,
Yunkun
Yang
,
Linfeng
Ai
,
Enze
Zhang
,
Ce
Huang
,
Pengliang
Leng
,
Minhao
Zhao
,
Xiaoyi
Xie
,
Yuda
Zhang
,
Nesta Benno
Joseph
,
Rajdeep
Banerjee
,
Awadhesh
Narayan
,
Jin
Zou
,
Wenqing
Liu
,
Xiaodong
Xu
,
Faxian
Xiu
Diamond Proposal Number(s):
[22532]
Abstract: Two-dimensional (2D) magnets offer valuable electrical and mechanical properties, and could be used to create 2D nanoelectromechanical systems. However, the low Curie temperature of most 2D magnets limits practical applications. Here we report van der Waals ferromagnetic low-pass filters based on wafer-scale iron germanium telluride (Fe5+xGeTe2) thin films grown by molecular-beam epitaxy. We show that the Curie temperature of the Fe5+xGeTe2 system can be continuously modulated from 260 to 380 K via in situ iron doping. Few-layer Fe5+xGeTe2 is used to fabricate planar spiral inductors, with the 2D magnetic core providing inductance enhancement of 74% at room temperature compared with an inductor without the core. Low-pass Butterworth filters are then created from inductance–capacitance circuits built with these inductors. The filters offer a broad dynamic range of around 40 dB, and the –3 dB cut-off frequency can be tuned from 18 to 30 Hz by using different inductors in the inductance–capacitance circuit.
|
Mar 2023
|
|
E02-JEM ARM 300CF
|
William J.
Cull
,
Stephen T.
Skowron
,
Ruth
Hayter
,
Craig T.
Stoppiello
,
Graham A.
Rance
,
Johannes
Biskupek
,
Zakhar R.
Kudrynskyi
,
Zakhar D.
Kovalyuk
,
Christopher S.
Allen
,
Thomas J.
Slater
,
Ute
Kaiser
,
Amalia
Patanè
,
Andrei N.
Khlobystov
Diamond Proposal Number(s):
[25251]
Open Access
Abstract: Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In this work we synthesize single-layer, ultrathin, subnanometer-wide InxSey by templated growth inside single-walled carbon nanotubes (SWCNTs). Despite the complex polymorphism of InxSey we show that the phase of the encapsulated material can be identified through comparison of experimental aberration-corrected transmission electron microscopy (AC-TEM) images and AC-TEM simulations of known structures of InxSey. We show that, by altering synthesis conditions, one of two different stoichiometries of sub-nm InxSey, namely InSe or β-In2Se3, can be prepared. Additionally, in situ AC-TEM heating experiments reveal that encapsulated β-In2Se3 undergoes a phase change to γ-In2Se3 above 400 °C. Further analysis of the encapsulated species is performed using X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and Raman spectroscopy, corroborating the identities of the encapsulated species. These materials could provide a platform for ultrathin, subnanometer-wide phase-change nanoribbons with applications as nanoelectronic components.
|
Mar 2023
|
|
I10-Beamline for Advanced Dichroism
|
Diamond Proposal Number(s):
[21872, 27487]
Open Access
Abstract: The topological surface states (TSSs) in topological insulators (TIs) offer exciting prospects for dissipationless spin transport. Common spin-based devices, such as spin valves, rely on trilayer structures in which a non-magnetic (NM) layer is sandwiched between two ferromagnetic (FM) layers. The major disadvantage of using high-quality single-crystalline TI films in this context is that a single pair of spin-momentum locked channels spans across the entire film, meaning that only a very small spin current can be pumped from one FM to the other, along the side walls of the film. On the other hand, using nanocrystalline TI films, in which the grains are large enough to avoid hybridization of the TSSs, will effectively increase the number of spin channels available for spin pumping. Here, we used an element-selective, x-ray based ferromagnetic resonance technique to demonstrate spin pumping from a FM layer at resonance through the TI layer and into the FM spin sink.
|
Mar 2023
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Jack E. N.
Swallow
,
Elizabeth S.
Jones
,
Ashley R.
Head
,
Joshua S.
Gibson
,
Roey
Ben David
,
Michael W.
Fraser
,
Matthijs A.
Van Spronsen
,
Shaojun
Xu
,
Georg
Held
,
Baran
Eren
,
Robert S
Weatherup
Diamond Proposal Number(s):
[25834]
Open Access
Abstract: The reactions of H2, CO2, and CO gas mixtures on the surface of Cu at 200 °C, relevant for industrial methanol synthesis, are investigated using a combination of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) and atmospheric-pressure near edge X-ray absorption fine structure (AtmP-NEXAFS) spectroscopy bridging pressures from 0.1 mbar to 1 bar. We find that the order of gas dosing can critically affect the catalyst chemical state, with the Cu catalyst maintained in a metallic state when H2 is introduced prior to the addition of CO2. Only on increasing the CO2 partial pressure is CuO formation observed that coexists with metallic Cu. When only CO2 is present, the surface oxidizes to Cu2O and CuO, and the subsequent addition of H2 partially reduces the surface to Cu2O without recovering metallic Cu, consistent with a high kinetic barrier to H2 dissociation on Cu2O. The addition of CO to the gas mixture is found to play a key role in removing adsorbed oxygen that otherwise passivates the Cu surface, making metallic Cu surface sites available for CO2 activation and subsequent conversion to CH3OH. These findings are corroborated by mass spectrometry measurements, which show increased H2O formation when H2 is dosed before rather than after CO2. The importance of maintaining metallic Cu sites during the methanol synthesis reaction is thereby highlighted, with the inclusion of CO in the gas feed helping to achieve this even in the absence of ZnO as the catalyst support.
|
Mar 2023
|
|
E01-JEM ARM 200CF
E02-JEM ARM 300CF
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Runjia
Lin
,
Liqun
Kang
,
Karolina
Lisowska
,
Weiying
He
,
Siyu
Zhao
,
Shusaku
Hayama
,
Dan
Brett
,
Graham
Hutchings
,
Furio
Corà
,
Ivan
Parkin
,
Guanjie
He
Diamond Proposal Number(s):
[29254, 29207]
Open Access
Abstract: Electrocatalytic oxygen reduction reaction (ORR) has been intensively studied for efficient and environmentally benign energy conversion processes. However, insufficient understanding of ORR 2e--pathway mechanism at the atomic level inhibits rational design of electrocatalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H2O2 electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2e--pathway selectivity; an extended “dynamic active site saturation” model that examines in addition the hydrogenation kinetics linked to the OOH* adsorption energy enables us to resolve the activity-selectivity compromise. Through electrochemical and operando spectroscopic studies on the ORR process governed by a series of Co-N x /carbon nanotube hybrids, a construction-driven approach that aims to create the maximum number of 2e- ORR sites by directing the secondary ORR electron transfer step towards the 2e- intermediate is proven to be attainable by manipulating O2 hydrogenation kinetics. Control experiments reveal the O2 hydrogenation chemistry is related to a catalyst reconstruction with lower symmetry around the Co active centre induced by the application of a cathodic potential. The optimised catalyst exhibits a ~100% H2O2 selectivity and an outstanding activity with an ORR potential of 0.82 V versus the reversible hydrogen electrode to reach the ring current density of 1 mA cm-2 by using rotating ring-disk electrode measurement, which is the best-performing 2e- ORR electrocatalyst reported to date, and approaches the thermodynamic limit.
|
Mar 2023
|
|