E01-JEM ARM 200CF
|
Yiding
Jiao
,
Liqun
Kang
,
Jasper
Berry-Gair
,
Kit
Mccoll
,
Jianwei
Li
,
Haobo
Dong
,
Hao
Jiang
,
Ryan
Wang
,
Furio
Corà
,
Dan J. L.
Brett
,
Guanjie
He
,
Ivan
Parkin
Diamond Proposal Number(s):
[24450]
Open Access
Abstract: The primary issue faced by MnO2 cathode materials for aqueous Zn-ion batteries (AZIBs) is the occurrence of structural transformations during cycling, resulting in unstable capacity output. Pre-intercalating closely bonded ions into the MnO2 structures has been demonstrated as an effective approach to combat this. However, mechanisms of the pre-intercalation remain unclear. Herein, two distinct δ-MnO2 (K0.28MnO2·0.1H2O and K0.21MnO2·0.1H2O) are prepared with varying amounts of pre-intercalated K+ and applied as cathodes for AZIBs. The as-prepared K0.28MnO2·0.1H2O cathodes exhibit relatively high specific capacity (300 mA h g−1 at 100 mA g−1), satisfactory rate performance (35% capacity recovery at 5 A g−1) and competent cyclability (ca. 95% capacity retention after 1000 cycles at 2 A g−1), while inferior cyclability and rate performance are observed in K0.21MnO2·0.1H2O. A stable δ-MnO2 phase is observed upon cycling, with the reversible deposition of Zn4SO4(OH)6·5H2O (ZSH), ion migration between electrodes and synchronous transition of Mn valence states. This work firstly and systematically reveals the role of the pre-intercalated ions via density functional theory simulations and show that above a threshold K/Mn ratio of ca. 0.26, the K ions suppress structural transformations by stabilizing the δ phase. To demonstrate its commercial potential, AZIBs with high-loading active materials are fabricated, which deliver adequate energy and power densities compared with most commercial devices.
|
Nov 2020
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[18039]
Abstract: Cu2O is an attractive photocathode for important renewable energy reactions such as water splitting and CO2 reduction. Electrodeposition is commonly used to deposit Cu2O films on conductive substrates due to its simplicity and consistency. However, structural descriptors, linking electrodeposition parameters, film structure and the catalytic properties are elusive. A variety of Cu2O films reported by many research groups would often display vastly different electronic properties and catalytic activity, while appear indistinguishable under common characterisation tools. In this work, we take a systematic look into electrochemically deposited Cu2O and investigate the impact of deposition parameters towards the bulk and surface chemistry of the deposited film. Specifically, we employ high resolution XANES for thorough quantitative analysis of the Cu2O films, alongside more common characterisation methods like XRD, SEM and Raman spectroscopy. Photoelectrochemical (PEC) studies reveal an unexpected trend, where the highest PEC activity appears to correlate with the amount of Cu2+ content. Other factors which also affect the PEC activity and stability are film thickness and crystallite grain size. Our study shows that the use of high resolution XANES, though not perfect due to possible self-absorption issue, is apt for extracting compositional descriptor in concentrated thin film samples from the pre-edge energy position analysis. This descriptor can serve as a guide for future development of more active Cu2O based films for wide range of PEC processes as well as for solar cell applications.
|
Sep 2020
|
|
B18-Core EXAFS
|
Ian D.
Johnson
,
Gene
Nolis
,
Kit
Mccoll
,
Yimin A.
Wu
,
Daisy
Thornton
,
Linhua
Hu
,
Hyun Deog
Yoo
,
John W.
Freeland
,
Furio
Corà
,
Jeremy K.
Cockcroft
,
Ivan P.
Parkin
,
Robert F.
Klie
,
Jordi
Cabana
,
Jawwad A.
Darr
Diamond Proposal Number(s):
[14239]
Abstract: While commercial Li-ion batteries offer the highest energy densities of current rechargeable battery technologies, their energy storage limit has almost been achieved. Therefore, there is considerable interest in Mg batteries, which could offer increased energy densities in comparison to Li-ion batteries if a high-voltage electrode material, such as a transition-metal oxide, can be developed. However, there are currently very few oxide materials which have demonstrated reversible and efficient Mg2+ insertion and extraction at high voltages; this is thought to be due to poor Mg2+ diffusion kinetics within the oxide structural framework. Herein, the authors provide conclusive evidence of electrochemical insertion of Mg2+ into the tetragonal tungsten bronze V4Nb18O55, with a maximum reversible electrochemical capacity of 75 mA h g–1, which corresponds to a magnesiated composition of Mg4V4Nb18O55. Experimental electrochemical magnesiation/demagnesiation revealed a large voltage hysteresis with charge/discharge (1.12 V vs Mg/Mg2+); when magnesiation is limited to a composition of Mg2V4Nb18O55, this hysteresis can be reduced to only 0.5 V. Hybrid-exchange density functional theory (DFT) calculations suggest that a limited number of Mg sites are accessible via low-energy diffusion pathways, but that larger kinetic barriers need to be overcome to access the entire structure. The reversible Mg2+ intercalation involved concurrent V and Nb redox activity and changes in crystal structure, as confirmed by an array of complementary methods, including powder X-ray diffraction, X-ray absorption spectroscopy, and energy-dispersive X-ray spectroscopy. Consequently, it can be concluded that the tetragonal tungsten bronzes show promise as intercalation electrode materials for Mg batteries.
|
Jul 2020
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[9949]
Open Access
Abstract: The formation of silver and Au@Ag core@shell nanoparticles via reduction of AgNO3 by trisodium citrate was followed using in situ X-ray absorption near-edge structure (XANES) spectroscopy and time-resolved UV–visible (UV–vis) spectroscopy. The XANES data were analyzed through linear combination fitting, and the reaction kinetics were found to be consistent with first-order behavior with respect to silver cations. For the Au@Ag nanoparticles, the UV–vis data of a lab-scale reaction showed a gradual shift in dominance between the gold- and silver-localized surface plasmon absorbance bands. Notably, throughout much of the reaction, distinct gold and silver contributions to the UV–vis spectra were observed; however, in the final product, the contributions were not distinct.
|
Jun 2020
|
|
|
Zilu
Liu
,
Tianjun
Liu
,
Christopher N.
Savory
,
José P.
Jurado
,
Juan Sebastián
Reparaz
,
Jianwei
Li
,
Long
Pan
,
Charl F. J.
Faul
,
Ivan P.
Parkin
,
Gopinathan
Sankar
,
Satoru
Matsuishi
,
Mariano
Campoy‐quiles
,
David O.
Scanlon
,
Martijn A.
Zwijnenburg
,
Oliver
Fenwick
,
Bob C.
Schroeder
Open Access
Abstract: Organometallic coordination polymers (OMCPs) are a promising class of thermoelectric materials with high electrical conductivities and thermal resistivities. The design criteria for these materials, however, remain elusive and so far material modifications have been focused primarily on the nature of the metal cation to tune the thermoelectric properties. Herein, an alternative approach is described by synthesizing new organic ligands for OMCPs, allowing modulation of the thermoelectric properties of the novel OMCP materials over several orders of magnitude, as well as controlling the polarity of the Seebeck coefficient. Extensive material purification combined with spectroscopy experiments and calculations furthermore reveal the charge‐neutral character of the polymer backbones. In the absence of counter‐cations, the OMCP backbones are composed of air‐stable, ligand‐centered radicals. The findings open up new synthetic possibilities for OMCPs by removing structural constraints and putting significant emphasis on the molecular structure of the organic ligands in OMCP materials to tune their thermoelectric properties.
|
Jun 2020
|
|
|
Abdullah M
Alotaibi
,
Benjamin A. D.
Williamson
,
Sanjay
Sathasivam
,
Andreas
Kafizas
,
Mahdi
Alqahtani
,
Carlos
Sotelo-Vazquez
,
John
Buckeridge
,
Jiang
Wu
,
Sean P.
Nair
,
David O.
Scanlon
,
Ivan P.
Parkin
Open Access
Abstract: Multifunctional thin films which can display both photocatalytic and antibacterial activity are of great interest industrially. Here, for the first time, we have used aerosol assisted chemical vapour deposition (AACVD) to deposit highly photoactive thin films of Cu-doped anatase TiO2 on glass substrates. The films displayed much enhanced photocatalytic activity relative to pure anatase, and showed excellent antibacterial (vs S.Aureus and E.Coli) ability. Using a combination of transient absorption spectroscopy (TAS), photoluminescence (PL) measurements and hybrid density functional theory calculations, we have gained nanoscopic insights into the improved properties of the Cu-doped TiO2 films. Our analysis has highlighted that the interactions between substitutional and interstitial Cu in the anatase lattice can explain the extended exciton lifetimes observed in the doped samples, and the enhanced UV/visible light photoactivities observed.
|
Feb 2020
|
|
I09-Surface and Interface Structural Analysis
|
Benjamin A. D.
Williamson
,
Thomas J.
Featherstone
,
Sanjayan S.
Sathasivam
,
Jack E. N.
Swallow
,
Huw
Shiel
,
Leanne A. H.
Jones
,
Matthew J
Smiles
,
Anna
Regoutz
,
Tien-Lin
Lee
,
Xueming
Xia
,
Christopher
Blackman
,
Pardeep K.
Thakur
,
Claire J.
Carmalt
,
Ivan P.
Parkin
,
Tim D.
Veal
,
David O.
Scanlon
Diamond Proposal Number(s):
[18195, 21431]
Open Access
Abstract: Transparent conducting oxides (TCOs) are ubiquitous in modern consumer electronics. SnO2 is an earth abundant, cheaper alternative to In2O3 as a TCO however, its performance in terms of electrical properties lags behind that of In2O3. Based on the recent discovery of mobility and conductivity enhancements in In2O3 from resonant dopants, we use a combination of state-of-the-art hybrid density functional theory calculations, high resolution photoelectron spectroscopy and semiconductor statistics modelling to understand what the optimal dopant is to maximise performance of SnO2-based TCOs. We demonstrate that Ta is the optimal dopant for high performance SnO2, as it is a resonant dopant which is readily incorporated into SnO2 with the Ta 5d states sitting ca. 1.4 eV above the conduction band minimum. Experimentally, the electron effective mass of Ta doped SnO2 was shown to be 0.23m0, compared to 0.29m0 seen with conventional Sb doping, explaining its ability to yield higher mobilities and conductivities.
|
Feb 2020
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
E01-JEM ARM 200CF
|
Jianwei
Li
,
Kit
Mccoll
,
Xuekun
Lu
,
Sanjay
Sathasivam
,
Haobo
Dong
,
Liqun
Kang
,
Zhuangnan
Li
,
Siyu
Zhao
,
Andreas G.
Kafizas
,
Ryan
Wang
,
Dan J. L.
Brett
,
Paul R.
Shearing
,
Furio
Corà
,
Guanjie
He
,
Claire J.
Carmalt
,
Ivan P.
Parkin
Diamond Proposal Number(s):
[24197, 22572]
Abstract: Cost‐effective and environment‐friendly aqueous zinc‐ion batteries (AZIBs) exhibit tremendous potential for application in grid‐scale energy storage systems but are limited by suitable cathode materials. Hydrated vanadium bronzes have gained significant attention for AZIBs and can be produced with a range of different pre‐intercalated ions, allowing their properties to be optimized. However, gaining a detailed understanding of the energy storage mechanisms within these cathode materials remains a great challenge due to their complex crystallographic frameworks, limiting rational design from the perspective of enhanced Zn2+ diffusion over multiple length scales. Herein, a new class of hydrated porous δ‐Ni0.25V2O5.nH2O nanoribbons for use as an AZIB cathode is reported. The cathode delivers reversibility showing 402 mAh g−1 at 0.2 A g−1 and a capacity retention of 98% over 1200 cycles at 5 A g−1. A detailed investigation using experimental and computational approaches reveal that the host “δ” vanadate lattice has favorable Zn2+ diffusion properties, arising from the atomic‐level structure of the well‐defined lattice channels. Furthermore, the microstructure of the as‐prepared cathodes is examined using multi‐length scale X‐ray computed tomography for the first time in AZIBs and the effective diffusion coefficient is obtained by image‐based modeling, illustrating favorable porosity and satisfactory tortuosity.
|
Feb 2020
|
|
I09-Surface and Interface Structural Analysis
|
Jack E. N.
Swallow
,
Benjamin A. D.
Williamson
,
Sanjayan
Sathasivam
,
Max
Birkett
,
Thomas J.
Featherstone
,
Philip A. E.
Murgatroyd
,
Holly J.
Edwards
,
Zachary W.
Lebens-Higgins
,
David A.
Duncan
,
Mark
Farnworth
,
Paul
Warren
,
Nianhua
Peng
,
Tien-Lin
Lee
,
Louis F. J.
Piper
,
Anna
Regoutz
,
Claire J.
Carmalt
,
Ivan P.
Parkin
,
Vin R.
Dhanak
,
David O.
Scanlon
,
Tim D.
Veal
Diamond Proposal Number(s):
[18428]
Open Access
Abstract: Transparent conductors are a vital component of smartphones, touch-enabled displays, low emissivity windows and thin film photovoltaics. Tin-doped In2O3 (ITO) dominates the transparent conductive films market, accounting for the majority of the current multi-billion dollar annual global sales. Due to the high cost of indium, however, alternatives to ITO have been sought but have inferior properties. Here we demonstrate that molybdenum-doped In2O3 (IMO) has higher mobility and therefore higher conductivity than ITO with the same carrier density. This also results in IMO having increased infrared transparency compared to ITO of the same conductivity. These properties enable current performance to be achieved using thinner films, reducing the amount of indium required and raw material costs by half. The enhanced doping behavior arises from Mo 4d donor states being resonant high in the conduction band and negligibly perturbing the host conduction band minimum, in contrast to the adverse perturbation caused by Sn 5s dopant states. This new understanding will enable better and cheaper TCOs based on both In2O3 and other metal oxides.
|
Sep 2019
|
|
|
Abstract: Metal-organic frameworks (MOFs) have shown great promise for sensing of dangerous chemicals, including environmental toxins, nerve agents and explosives. However, challenges remain, such as the sensing of larger analytes and the discrimination between similar analytes at different concentrations. Herein we present the synthesis and development of a new, large-pore MOF for explosives sensing, and demonstrate its excellent sensitivity against a range of relevant explosive compounds including trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN). We have developed an improved, thorough methodology to eliminate common sources of error in our sensing protocol. We then combine this new MOF with two others as part of a three-MOF array for fluorescent sensing and discrimination of five explosives. This sensor works at part-per-million concentrations and importantly, can discriminate explosives with high accuracy without reference to their concentration.
|
Mar 2019
|
|