I10-Beamline for Advanced Dichroism
|
Abstract: We present long-wavelength neutron diffraction data measured on both single crystal and polycrystalline samples of the skyrmion host material Cu2OSeO3. We observe magnetic satellites around the
(0
1
⎯
⎯
1)
(01¯1)
diffraction peak not accessible to other techniques, and distinguish helical from conical spin textures in reciprocal space. Our measurements show that not only the field-polarised phase but also the helical ground state are made up of ferrimagnetic clusters instead of individual spins. These clusters are distorted Cu tetrahedra, where the spin on one Cu ion is anti-aligned with the spin on the three other Cu ions.
|
Dec 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Jack
Humby
,
Oguarabau
Benson
,
Gemma L.
Smith
,
Stephen P.
Argent
,
Ivan
Da Silva
,
Yongqiang
Cheng
,
Svemir
Rudic
,
Pascal
Manuel
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Lucy K.
Saunders
,
Inigo
Vitorica-yrezabal
,
George F. S.
Whitehead
,
Timothy L.
Easun
,
William
Lewis
,
Alexander J.
Blake
,
Anibal J.
Ramirez-cuesta
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[13666]
Open Access
Abstract: In order to develop new porous materials for applications in gas separations such as natural gas upgrading, landfill gas processing and acetylene purification it is vital to gain understanding of host-substrate interactions at a molecular level. Herein we report a series of six isoreticular metal-organic frameworks (MOFs) for selective gas adsorption. These materials do not incorporate open metal sites and thus provide an excellent platform to investigate the effect of the incorporation of ligand functionality via amide and alkyne groups on substrate binding. By reducing the linker length of our previously reported MFM-136, we report much improved CO2/CH4 (50:50) and CO2/N¬2 (15:85) selectivity values of 20.2 and 65.4, respectively (1 bar and 273 K), in the new amide-decorated MOF, MFM-126. The CO2 separation performance of MFM-126 has been confirmed by dynamic breakthrough experiments. In situ inelastic neutron scattering and synchrotron FT-IR microspectroscopy were employed to elucidate dynamic interactions of adsorbed CO2 molecules within MFM-126. Upon changing the functionality to an alkyne group in MFM-127, the CO2 uptake decreases but the C2H2 uptake increases by 68%, leading to excellent C2H2/CO2 and C2H2/CH4 selectivities of 3.7 and 21.2, respectively. Neutron powder diffraction enabled the direct observation of the preferred binding domains in MFM-126 and MFM-127, and, to the best of our knowledge, we report the first example of acetylene binding to an alkyne moiety in a porous material, with over 50% of the acetylene observed within MFM-127 displaying interactions (<4 Å) with the alkyne functionality of the framework.
|
Oct 2018
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Lei
Li
,
Ivan
Da Silva
,
Daniil I.
Kolokolov
,
Xue
Han
,
Jiangnan
Li
,
Gemma
Smith
,
Yongqiang
Cheng
,
Luke L.
Daemen
,
Christopher G.
Morris
,
Harry G. W.
Godfrey
,
Nicholas
Jacques
,
Xinran
Zhang
,
Pascal
Manuel
,
Mark D.
Frogley
,
Claire A.
Murray
,
Anibal J.
Ramirez-cuesta
,
Gianfelice
Cinque
,
Chiu C.
Tang
,
Alexander G.
Stepanov
,
Sihai
Yang
,
Martin
Schroder
Diamond Proposal Number(s):
[14564, 15970]
Open Access
Abstract: Modulation of pore environment is an effective strategy to optimize guest binding in porous materials. We report the post-synthetic modification of the charge distribution in a charged metal-organic framework, MFM-305-CH3, [Al(OH)(L)]Cl, [(H2L)Cl = 3,5-dicarboxy-1-methylpyridinium chloride] and its effect on guest binding. MFM-305-CH3 shows a distribution of cationic (methylpyridinium) and anionic (chloride) centers and can be modified to release free pyridyl N-centres by thermal demethylation of the 1-methylpyridinium moiety to give the neutral isostructural MFM-305. This leads simultaneously to enhanced adsorption capacities and selectivities (two parameters that often change in opposite directions) for CO2 and SO2 in MFM-305. The host-guest binding has been comprehensively investigated by in situ synchrotron X-ray and neutron powder diffraction, inelastic neutron scattering, synchrotron infrared and 2H NMR spectroscopy and theoretical modelling to reveal the binding domains of CO2 and SO2 in these materials. CO2 and SO2 binding in MFM-305-CH3 is shown to occur via hydrogen bonding to the methyl and aromatic-CH groups, with a long range interaction to chloride for CO2. In MFM-305 the hydroxyl, pyridyl and aromatic C-H groups bind CO2 and SO2 more effectively via hydrogen bonds and dipole interactions. Post-synthetic modification via dealkylation of the as-synthesised metal-organic framework is a powerful route to the synthesis of materials incorporating active polar groups that cannot be prepared directly.
|
Oct 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[13284]
Open Access
Abstract: Polycrystalline samples of the new perovskites SrLaCrSnO6 and Ca2CeCr2TiO9 have been synthesised using the ceramic method and characterized by x-ray diffraction, neutron diffraction and magnetometry. Both crystallise in the space group Pbnm, with a disordered distribution of B-site cations, and both exhibit Gz-type antiferromagnetism at low temperatures. The antiferromagnetic order develops over a large temperature range. It is proposed that isolated antiferromagnetic clusters grow in size upon cooling to form a long-range antiferromagnetically-ordered backbone running through the structure. Cations with few magnetic nearest-neighbours remain decoupled from the backbone down to 2 K. More decoupled clusters are present in Ca2CeCr2TiO9 than in SrLaCrSnO6. This is attributed to the increase in frustration that accompanies the increase in strength of the next-nearest-neighbour interactions that occurs when d1°:Sn4+ is replaced by d°:Ti4+.
|
Oct 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[13284]
Abstract: Topochemical reduction of the double-perovskite oxide Sr2FeIrO6 under dilute hydrogen leads to the formation of Sr2FeIrO4. This phase consists of ordered infinite sheets of apex-linked Fe2+O4 and Ir2+O4 squares stacked with Sr2+ cations and is the first report of Ir2+ in an extended oxide phase. Plane-wave density functional theory calculations indicate high-spin Fe2+ (d6, S = 2) and low-spin Ir2+ (d7, S = 1/2) configurations for the metals and confirm that both ions have a doubly occupied dz2 orbital, a configuration that is emerging as a consistent feature of all layered oxide phases of this type. The stability and double occupation of dz2 in the Ir2+ ions invites a somewhat unexpected analogy to the extensively studied Ir4+ ion as both ions share a common near-degenerate (dxy/xz/yz)5 valence configuration. On cooling below 115 K, Sr2FeIrO4 enters a magnetically ordered state in which the Ir and Fe sublattices adopt type II antiferromagnetically coupled networks which interpenetrate each other, leading to frustration in the nearest-neighbor Fe–O–Ir couplings, half of which are ferromagnetic and half antiferromagnetic. The spin frustration drives a symmetry-lowering structural distortion in which the four equivalent Ir–O and Fe–O distances of the tetragonal I4/mmm lattice split into two mutually trans pairs in a lattice with monoclinic I112/m symmetry. This strong magneto-lattice coupling arises from the novel local electronic configurations of the Fe2+ and Ir2+ cations and their cation-ordered arrangement in a distorted perovskite lattice.
|
Oct 2018
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Martin
Schroder
,
Harry
Godfrey
,
Ivan
Da Silva
,
Lydia
Briggs
,
Joe
Carter
,
Christopher
Morris
,
Mathew
Savage
,
Timothy
Easun
,
Pascal
Manuel
,
Claire
Murray
,
Chiu
Tang
,
Mark
Frogley
,
Gianfelice
Cinque
,
Sihai
Yang
Diamond Proposal Number(s):
[15972, 13666]
Abstract: MFM‐300(Al) shows reversible uptake of NH3 (15.7 mmol g‐1 at 273 K and 1.0 bar) over 50 cycles with an exceptional packing density of 0.62 g cm‐3 at 293 K. In situ neutron powder diffraction and synchrotron FTIR micro‐spectroscopy on ND3@MFM‐300(Al) confirms reversible H/D site exchange between the adsorbent and adsorbate, representing a new type of adsorption interaction.
|
Aug 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[13284]
Abstract: Sr2Fe3Se2O3 is a localized-moment iron oxide selenide in which two unusual coordinations for Fe2+ ions form two sublattices in a 2:1 ratio. In the paramagnetic region at room temperature, the compound adopts the crystal structure first reported for Sr2Co3S2O3, crystallizing in space group Pbam with a = 7.8121 Å, b = 10.2375 Å, c = 3.9939 Å, and Z = 2. The sublattice occupied by two-thirds of the iron ions (Fe2 site) is formed by a network of distorted mer-[FeSe3O3] octahedra linked via shared Se2 edges and O vertices forming layers, which connect to other layers by shared Se vertices. As shown by magnetometry, neutron powder diffraction, and Mössbauer spectroscopy measurements, these moments undergo long-range magnetic ordering below TN1 = 118 K, initially adopting a magnetic structure with a propagation vector (1/2 – δ, 0, 1/2) (0 ≤ δ ≤ 0.1) which is incommensurate with the nuclear structure and described in the Pbam1′(a01/2)000s magnetic superspace group, until at 92 K (TINC) there is a first order lock-in transition to a structure in which these Fe2 moments form a magnetic structure with a propagation vector (1/2, 0, 1/2) which may be modeled using a 2a × b × 2c expansion of the nuclear cell in space group 36.178 Bab21m (BNS notation). Below TN2 = 52 K the remaining third of the Fe2+ moments (Fe1 site) which are in a compressed trans-[FeSe4O2] octahedral environment undergo long-range ordering, as is evident from the magnetometry, the Mössbauer spectra, and the appearance of new magnetic Bragg peaks in the neutron diffractograms. The ordering of the second set of moments on the Fe1 sites results in a slight reorientation of the majority moments on the Fe2 sites. The magnetic structure at 1.5 K is described by a 2a × 2b × 2c expansion of the nuclear cell in space group 9.40 Iab (BNS notation).
|
Jul 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[13284]
Abstract: We report the synthesis of the first 4d transition metal oxide‐hydride, LaSr3NiRuO4H4, prepared via topochemical anion exchange. Neutron diffraction data show that the hydride ions occupy the equatorial anion sites in the host lattice and as a result the Ru and Ni cations are located in a plane containing only hydride ligands ‐ a unique structural feature with obvious parallels to the CuO2 sheets present in the superconducting cuprates. DFT calculations confirm the presence of S = ½ Ni1+ and S = 0, Ru2+ centres, but neutron diffraction and μSR data show no evidence for long‐range magnetic order between the Ni centres down to 1.8 K. The observed weak inter‐cation magnetic coupling can be attributed to poor overlap between Ni 3d_(z^2 ) and H 1s in the super‐exchange pathways.
|
Mar 2018
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[9443, 9444, 13650, 15833]
Abstract: Natural gas (methane, CH4) is widely considered as a promising energy carrier for mobile applications. Maximising the storage capacity is the primary goal for the design of future storage media. Here we report the CH4 storage properties in a family of isostructural (3,24)-connected porous materials, MFM-112a, MFM-115a and MFM-132a with different linker backbone functionalisation. Both MFM-112a and MFM-115a show excellent CH4 uptakes of 236 and 256 cm3 (STP) cm–3 (v/v) at 80 bar and room temperature, respectively. Significantly, MFM-115a displays an exceptionally high deliverable CH4 capacity of 208 v/v between 5 and 80 bar at room temperature, making it among the best performing MOFs for methane storage. We also synthesized the partially deuterated versions of the above materials and applied solid-state 2H NMR spectroscopy to show that these three frameworks contain molecular rotors which exhibit motion in fast, medium and slow regimes, respectively. In situ neutron powder diffraction studies on the binding sites for CD4 within MFM-132a and MFM-115a reveal that the primary binding site is located within the small pocket enclosed by the [(Cu2)3(isophthalate)3] window and three anthracene/phenyl panels. The open Cu(II) sites are the secondary/tertiary adsorption sites in these structures. Thus, we obtained direct experimental evidence showing that a tight cavity can generate a stronger binding affinity to gas molecules than open metal sites. Solid-state 2H NMR and neutron diffraction studies reveal that it is the combination of optimal molecular dynamics, pore geometry and size, and favourable binding sites that leads to the exceptional and different methane uptakes in these materials.
|
Aug 2017
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Zhenzhong
Lu
,
Harry G. W.
Godfrey
,
Ivan
Da Silva
,
Yongqiang
Cheng
,
Mathew
Savage
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Simon J.
Teat
,
Kevin J.
Gagnon
,
Mark D.
Frogley
,
Pascal
Manuel
,
Svemir
Rudic
,
Anibal J.
Ramirez-cuesta
,
Timothy L.
Easun
,
Sihai
Yang
,
Martin
Schröder
Diamond Proposal Number(s):
[13666]
Open Access
Abstract: Hydrogen bonds dominate many chemical and biological processes, and chemical modification enables control and modulation of host–guest systems. Here we report a targeted modification of hydrogen bonding and its effect on guest binding in redox-active materials. MFM-300(VIII) {[VIII2(OH)2(L)], LH4=biphenyl-3,3′,5,5′-tetracarboxylic acid} can be oxidized to isostructural MFM-300(VIV), [VIV2O2(L)], in which deprotonation of the bridging hydroxyl groups occurs. MFM-300(VIII) shows the second highest CO2 uptake capacity in metal-organic framework materials at 298 K and 1 bar (6.0 mmol g−1) and involves hydrogen bonding between the OH group of the host and the O-donor of CO2, which binds in an end-on manner, =1.863(1) Å. In contrast, CO2-loaded MFM-300(VIV) shows CO2 bound side-on to the oxy group and sandwiched between two phenyl groups involving a unique ···c.g.phenyl interaction [3.069(2), 3.146(3) Å]. The macroscopic packing of CO2 in the pores is directly influenced by these primary binding sites.
|
Jan 2017
|
|