B18-Core EXAFS
E01-JEM ARM 200CF
|
Ruoyu
Xu
,
Liqun
Kang
,
Konstantinos G.
Papanikolaou
,
Bolun
Wang
,
Sushila
Marlow
,
Qian
He
,
Peng
Zhang
,
Jianfang
Wang
,
Dan J. I.
Brett
,
Michail
Stamatakis
,
Feng Ryan
Wang
Diamond Proposal Number(s):
[20643, 19318, 19246, 19072, 20629]
Open Access
Abstract: Proton exchange membrane fuel cells require oxygen reduction catalysts with high activity and stability. Pt based alloy materials are most widely applied ORR catalyst due to its high intrinsic activity, but usually suffer from rapid deactivation as a result of particle agglomeration, detachment, Ostwald ripening and/or Pt dissolution. Here we investigate the degradation of the PdPt alloys via in situ X-ray absorption fine structure, Δμ analysis, identical location-electron microscopy and DFT calculations. We conclude that the origin of high activity and stability of the PdPt catalyst stems from the oxidation resistance of metallic Pt, forming mainly surface adsorbed O species at high potentials. Two stage degradation process are observed, showing an evolution of dynamic surface dependent ORR performance along with the deactivation process. The careful design of Pt alloy structure leads to controlled surface oxygen behaviours. This opens a new way to increase the lifespan of fuel cells and improve the Pt utilization efficiency.
|
Nov 2022
|
|
E01-JEM ARM 200CF
E02-JEM ARM 300CF
|
Jianwei
Li
,
Ningjing
Luo
,
Liqun
Kang
,
Fangjia
Zhao
,
Yiding
Jiao
,
Thomas J.
Macdonald
,
Min
Wang
,
Ivan P.
Parkin
,
Paul R.
Shearing
,
Dan J. L.
Brett
,
Guoliang
Chai
,
Guanjie
He
Diamond Proposal Number(s):
[22553, 22604, 30614]
Open Access
Abstract: Layered manganese oxides adopting pre-accommodated cations have drawn tremendous interest for the application as cathodes in aqueous zinc-ion batteries (AZIBs) owing to their open 2D channels for fast ion-diffusion and mild phase transition upon topochemical (de)intercalation processes. However, it is inevitable to see these “pillar” cations leaching from the hosts owing to the loose interaction with negatively charged Helmholtz planes within the hosts and shearing/bulking effects in 2D structures upon guest species (de)intercalation, which implies a limited modulation to prevent them from rapid performance decay. Herein, a new class of layered manganese oxides, Mg0.9Mn3O7·2.7H2O, is proposed for the first time, aims to achieve a robust cathode for high-performance AZIBs. The cathode can deliver a high capacity of 312 mAh g−1 at 0.2 A g−1 and exceptional cycling stability with 92% capacity retention after 5 000 cycles at 5 A g−1. The comprehensive characterizations elucidate its peculiar motif of pined Mg-□Mn-Mg dumbbell configuration along with interstratified hydrogen bond responsible for less Mn migration/dissolution and quasi-zero-strain characters. The revealed new structure-function insights can open up an avenue toward the rational design of superstructural cathodes for reversible AZIBs.
|
Nov 2022
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
B18-Core EXAFS
E01-JEM ARM 200CF
|
Xuze
Guan
,
Rong
Han
,
Hiroyuki
Asakura
,
Zhipeng
Wang
,
Siyuan
Xu
,
Bolun
Wang
,
Liqun
Kang
,
Yiyun
Liu
,
Sushila
Marlow
,
Tsunehiro
Tanaka
,
Yuzheng
Guo
,
Feng Ryan
Wang
Diamond Proposal Number(s):
[23759, 24450, 29094, 24197]
Open Access
Abstract: Surface oxidation chemistry involves the formation and breaking of metal–oxygen (M–O) bonds. Ideally, the M–O bonding strength determines the rate of oxygen absorption and dissociation. Here, we design reactive bridging O2– species within the atomic Cu–O–Fe site to accelerate such oxidation chemistry. Using in situ X-ray absorption spectroscopy at the O K-edge and density functional theory calculations, it is found that such bridging O2– has a lower antibonding orbital energy and thus weaker Cu–O/Fe–O strength. In selective NH3 oxidation, the weak Cu–O/Fe–O bond enables fast Cu redox for NH3 conversion and direct NO adsorption via Cu–O–NO to promote N–N coupling toward N2. As a result, 99% N2 selectivity at 100% conversion is achieved at 573 K, exceeding most of the reported results. This result suggests the importance to design, determine, and utilize the unique features of bridging O2– in catalysis.
|
Nov 2022
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
B18-Core EXAFS
|
Jichao
Zhang
,
Xuedan
Song
,
Liqun
Kang
,
Jiexin
Zhu
,
Longxiang
Liu
,
Qing
Zhang
,
Dan J. I.
Brett
,
Paul R.
Shearing
,
Liqiang
Mai
,
Ivan P.
Parkin
,
Guanjie
He
Diamond Proposal Number(s):
[29340, 29271]
Open Access
Abstract: Layered hydroxides have shown superior catalytic activity for the electrocatalytic organic compound oxidation reaction. However, metal leaching can lead to uncontrollable structural phase transformation. Here, we report a Cr-Ni(OH)2 electrocatalyst as a model of a pre-catalyst for the identification of the structure-performance relationship. The optimized electrocatalyst delivered superb performances, i.e., a low potential of 1.38 V (versus reversible hydrogen electrode [RHE]) to reach 100 mA cm−2 and stable activity over 200 h at 10 mA cm−2. In situ analyses and theoretical calculations demonstrate that well-tuned electronic structures and the superhydrophilic-superaerophobic surface can enable rapid urea oxidation reaction (UOR) kinetics, which reduces the specific adsorption OH− and significantly depresses Cr dopants leaching, and this helps to maintain high UOR performance. Furthermore, the crucial role of mass transfer improvement to alleviate the structural decay under high potentials is disclosed.
|
Oct 2022
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
|
Diamond Proposal Number(s):
[29340]
Abstract: The development of low-cost, robust and efficient non-noble metal electrocatalysts is still a pursuit for the hydrogen evolution reaction (HER). Herein, a self-standing electrocatalyst, Ni2P/CoP nanosheet, was fabricated directly on three-dimensional Ni foams by two facile steps, which illustrated both high activity and stability for HER in different electrolytes. Benefiting from the porous structures of nanosheets with large specific surface area and the hybrid Ni2P/CoP, the as-prepared electrocatalyst presented remarkable HER with overpotentials of 65.2 mV and 87.8 mV to reach a current density of -10 mA cm-2 in neutral and alkaline media, respectively. Density function theory calculations revealed a lower activation energy of water dissociation and efficient HER steps of hybrid Ni2P/CoP nanosheets compared with mono CoP. The self-standing electrocatalyst maintained excellent chemical stability. Additionally, the HER process in domestic wastewater was realized with more impressive performance by using Ni2P/CoP nanosheets compared with commercial Pt/C. Hydrogen was continuously generated for 20 h in mildly alkaline dishwashing wastewater. This work provides a feasible way to fabricate non-noble metal and self-standing hybrid bimetallic phosphides for HER in neutral and alkaline media, showing great potential for efficient hydrogen production by re-utilizing wastewater resources.
|
Apr 2022
|
|
B18-Core EXAFS
E01-JEM ARM 200CF
|
Zhangxiang
Hao
,
Jie
Chen
,
Xuekun
Lu
,
Liqun
Kang
,
Chun
Tan
,
Ruoyu
Xu
,
Lixia
Yuan
,
Dan J.l.
Brett
,
Paul R.
Shearing
,
Feng Ryan
Wang
,
Yunhui
Huang
Diamond Proposal Number(s):
[19072, 19246]
Open Access
Abstract: Despite progress of functionalized separator in preventing the shuttle effect and promoting the sulfur utilization, the precise and non-destructive investigation of structure-function-performance associativity remains limited so far in Li-S batteries. Here, we build consecutive multiscale analysis via combining X-ray absorption fine structure (XAFS) and X-ray computational tomography (CT) techniques to precisely visit the structure-function-performance relationship. XAFS measurement offers the atomic scale changes in the chemical structure and environment. Moreover, a non-destructive technique of X-ray CT proves the functionalized separator role for microscopic scale, which is powerful chaining to bridge the chemical structures of the materials with the overall performance modulation of cells. Benefiting from this consecutive multiscale analysis, we report that the uniform doping of Sr2+ into the perovskite LaMnO3-δ material changes the Mn oxidation states and conductivity (chemical structure), leading to effective lithium polysulfide trapping and accelerated sulfur redox (separator function), and resulting in outstanding cell performance.
|
Apr 2022
|
|
B18-Core EXAFS
E01-JEM ARM 200CF
E02-JEM ARM 300CF
|
Runjia
Lin
,
Liqun
Kang
,
Tianqi
Zhao
,
Jianrui
Feng
,
Veronica
Celorrio
,
Guohui
Zhang
,
Giannantonio
Cibin
,
Anthony
Kucernak
,
Dan
Brett
,
Furio
Cora
,
Ivan P.
Parkin
,
Guanjie
He
Diamond Proposal Number(s):
[25410, 29207]
Open Access
Abstract: Electrocatalytic organic compound oxidation reactions (OCORs) have been intensively studied for energy and environmentally benign applications. However, relatively little effort has been devoted to developing a fundamental understanding of OCOR, including the detailed competition with side reactions and activity limitations, thus inhibiting the rational design of high-performance electrocatalysts. Herein, by taking NiWO4-catalysed urea oxidation reaction (UOR) in aqueous media as an example, the competition between the OCOR and the oxygen evolution reaction (OER) within a wide potential range is examined. It is shown that the root of the competition can be ascribed to insufficient surface concentration of dynamic Ni3+, an active site shared by both UOR and OER. Similar phenomenon are observed in other OCOR electrocatalysts and systems. To address the issue, a “controllable reconstruction of pseudo-crystalline bimetal oxides” design strategy is proposed to maximise the dynamic Ni3+ population and manipulate the competition between UOR and OER. The optimised electrocatalyst delivers best-in-class performance and a ~10-fold increase in current density at 1.6 V versus the reversible hydrogen electrode for alkaline urea electrolysis compared to that of the pristine materials.
|
Mar 2022
|
|
B18-Core EXAFS
|
Open Access
Abstract: The research for surface active sites with outstanding catalytic activity and selectivity is continuing apace. The rationally designed catalyst with optimised energy level and geometric configuration is key to achieving novel reaction pathways with superior performance. Compared to the conventional supported nanomaterials as catalysts, single atomic site catalysts (SASCs) not only inherit the excellent recyclability but are also featured with ultimate atom efficiency, high structural uniformity and tunable coordination environment. These great advantages of SASCs are due to their unique atomic dispersion nature that preserves features of both heterogeneous and homogeneous catalysts. Especially the homogeneity of SASC enables convincing identification and characterisation of real active sites, making it an ideal platform to establish the definitive structure-activity relationship and to validate reaction mechanisms. Therefore, rational designed SASC has become the most prominent material to fabricate desired active sites with outstanding catalytic activity and selectivity. In this thesis, chemical synthesis strategies and characterisation techniques for SASCs are carefully reviewed. The limitations and future perspectives from a subjective view of the current methodology are discussed in detail as well. As inspired by pioneers’ work, rational designed Ru and Cu SASCs are prepared to investigate their distinct relationships between catalyst structures and reaction behaviours during CO oxidation reaction. With the help of combined in situ characterisation techniques, the structural evolution of active sites for both Ru and Cu catalysts were carefully studied. In the first project, the ultimate rational design of Ru active centre is realised by building surface single-sites to mimic molecular Ru catalysts. Inspired by a homogeneous Ru(II) complex, an air-stable surface -[bipy-Ru(II)(CO)2Cl2] single-site is designed through precise engineering of geometric and electronic structures from -[bipy-Ru(III)Cl4]- site. Such Ru(II) single-site enable oxidation of CO while the Ru(III) site is completely inert, providing an excellent prototype of the synthetic strategy which is generally applicable to transition metals. The second project focuses on the electronic metal-support interactions (EMSI) which describe electron flow between metal sites and a metal oxide support. For CuO-CeO2 catalysts, the electron withdrawing effect on Cu species introduced by electrophilic Ce4+ is maximised for atomically dispersed Cu sites over CeO2 surface. Experiment evidence shows the energy levels of 3d orbitals of isolated Cu(I)/(II) sites are decreased by Ce4+ cations in the support framework. It is demonstrated by in situ study that a [Cu(I)O2]3- site on CeO2 could selectively adsorb molecular O2 and form a rarely reported electrophilic 2-O2 species, leading to ten times higher activity than CuO clusters in CO oxidation. The third project is derived from the previous study of CuO-CeO2 catalysts, in which an unbalanced electron transfer between Cu and Ce is observed for CuO clusters dominant samples. To explain the reaction pathway of CeO2 supported CuO clusters in CO oxidation, an electronic metal-support-carbon interaction (EMSCI) based on EMSI is proposed. In the CuO-CeO2 redox, an additional flow of electron from metallic Cu to surface carbon species is observed by combined in situ studies, providing a complete picture of the mass and electron flow in the catalytic redox cycles.
|
Aug 2021
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
E01-JEM ARM 200CF
|
Zhangxiang
Hao
,
Junrun
Feng
,
Yiyun
Liu
,
Liqun
Kang
,
Bolun
Wang
,
Junwen
Gu
,
Lin
Sheng
,
Ruoyu
Xu
,
Sushila
Marlow
,
Dan J.l.
Brett
,
Yunhui
Huang
,
Feng Ryan
Wang
Diamond Proposal Number(s):
[22572, 21641, 22604, 26717, 29407]
Abstract: Polymer materials offer controllable structure-dependent performances in separation, catalysis and drug release. Their molecular structures can be precisely tailored to accept Li+ for energy storage applications. Here the design of sp2 carbon-based polyphenylene (PPH) with high lithium-ion uptakes and long-term stability is reported. Linear-PPH (L-PPH) exceeds the performance of crosslink-PPH (C-PPH), due to the fact that it has an ordered lamellar structure, promoting the Li+ intercalation/deintercalation channel. The L-PPH cell shows a clear charge and discharge plateau at 0.35 and 0.15 V vs. Li+/Li, respectively, which is absent in the C-PPH cell. The Li+ storage capacity of L-PPH is five times that of the C-PPH. The reversible storage capacity is further improved to 261 mAh g−1 by functionalizing the L-PPH with the –SO3H groups. In addition, the Li-intercalated structures of C-PPH and L-PPH are investigated via near-edge X-ray absorption fine structure (NEXAFS), suggesting the high reversible Li+ - C=C bond interaction at L-PPH. This strategy, based on new insight into sp2 functional groups, is the first step toward a molecular understanding of the structure storage-capacity relationship in sp2 carbon-based polymer.
|
Jul 2021
|
|
B18-Core EXAFS
|
Siyu
Zhao
,
Ruikuan
Xie
,
Liqun
Kang
,
Manni
Yang
,
Xingyu
He
,
Wenyao
Li
,
Ryan
Wang
,
Dan J. L.
Brett
,
Guanjie
He
,
Guoliang
Chai
,
Ivan P.
Parkin
Diamond Proposal Number(s):
[19850]
Open Access
Abstract: It remains a challenge to develop efficient electrocatalysts in neutral media for hydrogen evolution reaction (HER) due to the sluggish kinetics and switch of the rate determining step. Although metal phosphides are widely used HER catalysts, their structural stability is an issue due to oxidization, and the HER performance in neutral media requires improvement. Herein, a new material, i.e., grapevine‐shaped N‐doped iron phosphide on carbon nanotubes, as an efficient HER catalyst in neutral media is developed. The optimized catalyst shows an overpotential of 256 mV at a large current density of 65 mA cm−2, which is even 10 mV lower than that of the commercial 20% Pt/C catalyst. The excellent performance of the catalyst is further studied by combined computational and experimental techniques, which proves that the interaction between nitrogen and iron phosphides can provide more efficient active structures and stabilize the metal phosphide electrocatalysts for HER.
|
May 2021
|
|