B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[17501]
Abstract: Fourier transform infrared (FT-IR) spectroscopic imaging and microscopy of single living cells are established label-free technique for the study of cell biology. The constant driver to improve the spatial resolution of the technique is due to the diffraction limit given by IR wavelength making subcellular study challenging. Recently we have reported, with the use of a prototype ZnS transmission cell made of two hemispheres, that the spatial resolution is improved by the factor of the refractive index of ZnS, achieving a λ/2.7 spatial resolution using the synchrotron– IR microscopy with a 36x objective with numerical aperture (NA) of 0.5. To refine and to demonstrate that the ZnS hemisphere transmission device can be translated to standard bench-top FT-IR imaging systems, we have, in this work, modified the device to achieve a more precise path length, which has improved the spectral quality of the living cells, and showed for the first time that the device can be applied to study live cells with three different bench-top FT-IR imaging systems. We applied focal plane array (FPA) imaging, linear array, and a synchrotron single point scanning method and demonstrated that in all cases, subcellular details of individual living cells can be obtained. Results have shown that imaging with the FPA detector can measure the largest area in a given time whilst measurements from the scanning methods produced a smoother image. Synchrotron single point mapping produced the best quality image and has the flexibility to introduce over sampling to produce images of cells with great details, but it is time consuming in scanning mode. In summary, this work has demonstrated that the ZnS hemispheres can be applied in all three spectroscopic approaches to improve the spatial resolution without any modification to the existing microscopes.
|
Feb 2020
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Barbara E.
Souza
,
Lorenzo
Donà
,
Kirill
Titov
,
Paolo
Bruzzese
,
Zhixin
Zeng
,
Yang
Zhang
,
Arun S.
Babal
,
Annika F.
Moeslein
,
Mark D.
Frogley
,
Magda
Wolna
,
Gianfelice
Cinque
,
Bartolomeo
Civalleri
,
Jin-chong
Tan
Diamond Proposal Number(s):
[14902, 20281]
Abstract: Nanocomposites comprising metal organic frameworks (MOFs) embedded in a polymeric matrix are promising carriers for drug delivery applications. While understanding the chemical and physical transformations of MOFs during the re-lease of confined drug molecules is challenging, this is central to devising better ways for controlled release of therapeutic agents. Herein we demonstrate the efficacy of synchrotron microspectroscopy to track the in situ release of 5-fluorouracil (5-FU) anticancer drug molecules from a drug@MOF/polymer composite (5-FU@HKUST-1/polyurethane). Using experimental time-resolved infrared spectra jointly with newly developed density functional theory calculations, we reveal the detailed dynamics of vibrational motions underpinning the dissociation of 5-FU bound to the framework of HKUST-1 upon water exposure. We discover that HKUST-1 creates hydrophilic channels within the hydrophobic polyurethane matrix hence helping to tune drug release rate. The synergy between a hydrophilic MOF with a hydrophobic polymer can be harnessed to engineer a tunable nanocomposite that alleviates the unwanted burst effect commonly encountered in drug delivery.
|
Jan 2020
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[17743]
Open Access
Abstract: Photoacoustic spectroscopy (PAS) measures the photon absorption spectrum of a sample through detection of the acoustic wave generated by the photothermal effect as one modulates the intensity of the incident radiation at each wavelength. We have recently demonstrated the implementation of PAS in a microscopy configuration with mid-infrared radiation (microPAS). In the present work, we describe the performance of microPAS using synchrotron radiation (SR) in diffraction-limited spectromicroscopy and imaging experiments. Spectra were obtained for polystyrene beads, polypropylene fibres, and single fibres of human hair. SR produced microPAS spectra of much higher intensity as compared with those obtained using conventional mid- and near-infrared sources. For hair samples, the penetration depth of mid-infrared light, even with bright SR, is significantly shorter than the probed sample thickness at very low modulation frequencies resulting in saturated PAS spectra. In contrast, microPAS spectra of polymer beads were in general of much better quality than those obtained with conventional sources. We also demonstrated the capability to collect line profiles and line spectra at diffraction limited spatial resolution. The microPAS spectra of beads appear free from appreciable bandshape distortions arising from the real part of the refractive index of the sample. This observation confirms microPAS as an absorption-only technique and establishes it as a valuable new tool in the microspectroscopic analysis of particulates and of samples with a complex topography.
|
Dec 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
I12-JEEP: Joint Engineering, Environmental and Processing
|
Harry G. W.
Godfrey
,
Lydia
Briggs
,
Xue
Han
,
William J. F.
Trenholme
,
Christopher
Morris
,
Mathew
Savage
,
Louis
Kimberley
,
Oxana
Magdysyuk
,
Michael
Drakopoulos
,
Claire A.
Murray
,
Chiu C.
Tang
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sihai
Yang
,
Martin
Schroeder
Diamond Proposal Number(s):
[11278]
Open Access
Abstract: Understanding the mechanism of assembly and function of metal-organic frameworks (MOFs) is important for the development of practical materials. Herein, we report a time-resolved diffraction analysis of the kinetics of formation of a robust MOF, MFM-300(Fe), which shows high adsorption capacity for CO2 (9.55 mmol g−1 at 293 K and 20 bar). Applying the Avrami-Erofe’ev and the two-step kinetic Finke-Watzky models to in situ high-energy synchrotron X-ray powder diffraction data obtained during the synthesis of MFM-300(Fe) enables determination of the overall activation energy of formation (50.9 kJ mol−1), the average energy of nucleation (56.7 kJ mol−1), and the average energy of autocatalytic growth (50.7 kJ mol−1). The synthesis of MFM-300(Fe) has been scaled up 1000-fold, enabling the successful breakthrough separations of the CO2/N2 mixture in a packed-bed with a selectivity for CO2/N2 of 21.6. This study gives an overall understanding for the intrinsic behaviors of this MOF system, and we have determined directly the binding domains and dynamics for adsorbed CO2 molecules within the pores of MFM-300(Fe).
|
Nov 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Arun S.
Babal
,
Lorenzo
Donà
,
Matthew R.
Ryder
,
Kirill
Titov
,
Abhijeet K.
Chaudhari
,
Zhixin
Zeng
,
Chris S.
Kelley
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Bartolomeo
Civalleri
,
Jin-chong
Tan
Diamond Proposal Number(s):
[14902]
Abstract: Research on the broadband dielectric response of metal-organic frameworks (MOFs) is an emergent field that could yield exciting device applications, such as smart optoelectronics, terahertz sensors, high-speed telecommunications and microelectronics. Hitherto, a detailed understanding of the physical mechanisms controlling the frequency-dependent dielectric and optical behavior of MOFs is lacking because a large number of studies have focused only on static dielectric constants. Herein we employed high-resolution spectroscopic techniques in combination with periodic ab initio density functional theory (DFT) calculations to establish the different polarization processes for a porous copper-based MOF, termed HKUST-1. We used alternating current measurements to determine its dielectric response between 4 Hz and 1.5 MHz where orientational polarization is predominant, while synchrotron infrared (IR) reflectance was used to probe the far-IR, mid-IR, and near-IR dielectric response across the 1.2 THz to 150 THz range (ca. 40 – 5000 cm-1) where vibrational and optical polarizations are principal contributors to its dielectric permittivity. We demonstrate the role of pressure on the evolution of broadband dielectric response, where THz vibrations reveal distinct blue and red shifts of phonon modes from structural deformation of the copper paddle-wheel and the organic linker, respectively. We also investigated the effect of temperature on dielectric constants in the MHz region pertinent to microelectronics, to study temperature-dependent dielectric losses via dissipation in an alternating electric field. The DFT calculations offer insights into the physical mechanisms responsible for dielectric transitions observed in the experiments and enable us to explain the frequency shifts phenomenon detected under pressure. Together, the experiments and theory have enabled us to glimpse into the complex dielectric response and mechanisms underpinning a prototypical MOF subject to pressure, temperature, and vast frequencies.
|
Nov 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Gemma L.
Smith
,
Jennifer E.
Eyley
,
Xue
Han
,
Xinran
Zhang
,
Jiangnan
Li
,
Nicholas M.
Jacques
,
Harry G. W.
Godfrey
,
Stephen P.
Argent
,
Laura J.
Mccormick Mcpherson
,
Simon J.
Teat
,
Yongqiang
Cheng
,
Mark D.
Frogley
,
Gianfelice
Cinque
,
Sarah
Day
,
Chiu C.
Tang
,
Timothy L.
Easun
,
Svemir
Rudic
,
Anibal J.
Ramirez-cuesta
,
Sihai
Yang
,
Martin
Schroeder
Abstract: Emissions of SO2 from flue gas and marine transport have detrimental impacts on the environment and human health, but SO2 is also an important industrial feedstock if it can be recovered, stored and transported efficiently. Here we report the exceptional adsorption and separation of SO2 in a porous material, [Cu2(L)] (H4L = 4′,4‴-(pyridine-3,5-diyl)bis([1,1′-biphenyl]-3,5-dicarboxylic acid)), MFM-170. MFM-170 exhibits fully reversible SO2 uptake of 17.5 mmol g−1 at 298 K and 1.0 bar, and the SO2 binding domains for trapped molecules within MFM-170 have been determined. We report the reversible coordination of SO2 to open Cu(ii) sites, which contributes to excellent adsorption thermodynamics and selectivities for SO2 binding and facile regeneration of MFM-170 after desorption. MFM-170 is stable to water, acid and base and shows great promise for the dynamic separation of SO2 from simulated flue gas mixtures, as confirmed by breakthrough experiments.
|
Oct 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[9056, 8474]
Abstract: The mid‐infrared (IR) spectra of human cystic fibrosis (CF) cells acquired by Fourier transform infrared microspectroscopy (microFTIR) were compared to those of non‐CF cells. Within the 1700‐1480cm‐1 spectral domain of amides, unsupervised explorative principal component analysis identified a few variables reflecting quantitative and qualitative vibrations arising from protein secondary structures and amino acid side chains. Their pattern reflected α‐helix to β‐sheet transitions in bronchial epithelial cells and in immortalized peripheral blood mononuclear cells from patients with R1162X missense or in‐frame F508del mutations in the cystic fibrosis transmembrane regulator gene (Cftr). Similar transitions have been described in IR spectra of cells, tissues and body fluids of patients affected with some neurodegenerative diseases characterized by the accumulation of misfolded protein aggregates. The variables pattern was able to distinguish CF cells from non‐CF cells and was modified by molecular compounds used to rescue the unbalanced folding process of mutated cystic fibrosis transmembrane regulator (CFTR) anion channel. To our knowledge, this is the first experimental evidence of spectroscopic biomarkers of the impaired biogenesis of CFTR by IR microanalysis in the spectra of human CF bronchial epithelial and lymphoblasotid cells.
|
Oct 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
F.
Domenici
,
A.
Capocefalo
,
F.
Brasili
,
A.
Bedini
,
C.
Giliberti
,
R.
Palomba
,
I.
Silvestri
,
S.
Scarpa
,
S.
Morrone
,
G.
Paradossi
,
M. D.
Frogley
,
G.
Cinque
Diamond Proposal Number(s):
[8055]
Open Access
Abstract: Ultrasound (US) induced transient membrane permeabilisation has emerged as a hugely promising tool for the delivery of exogenous vectors through the cytoplasmic membrane, paving the way to the design of novel anticancer strategies by targeting functional nanomaterials to specific biological sites. An essential step towards this end is the detailed recognition of suitably marked nanoparticles in sonoporated cells and the investigation of the potential related biological effects. By taking advantage of Synchrotron Radiation Fourier Transform Infrared micro-spectroscopy (SR-microFTIR) in providing highly sensitive analysis at the single cell level, we studied the internalisation of a nanoprobe within fibroblasts (NIH-3T3) promoted by low-intensity US. To this aim we employed 20 nm gold nanoparticles conjugated with the IR marker 4-aminothiophenol. The significant Surface Enhanced Infrared Absorption provided by the nanoprobes, with an absorbance increase up to two orders of magnitude, allowed us to efficiently recognise their inclusion within cells. Notably, the selective and stable SR-microFTIR detection from single cells that have internalised the nanoprobe exhibited clear changes in both shape and intensity of the spectral profile, highlighting the occurrence of biological effects. Flow cytometry, immunofluorescence and murine cytokinesis-block micronucleus assays confirmed the presence of slight but significant cytotoxic and genotoxic events associated with the US-nanoprobe combined treatments. Our results can provide novel hints towards US and nanomedicine combined strategies for cell spectral imaging as well as drug delivery-based therapies.
|
Aug 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Diamond Proposal Number(s):
[19692]
Abstract: This study aimed at the development of improved drugs against human osteosarcoma, which is the most common primary bone tumor in children and teenagers with a low prognosis available treatment. New insights into the impact of an unconventional Pd(II) anticancer agent on human osteosarcoma cells were obtained by synchrotron-based infrared microspectroscopy (SR-microFTIR) and quasi-elastic neutron scattering (QENS) experiments from its effect on the cellular metabolism to its influence on intracellular water which can be regarded as a potential secondary pharmacological target. Specific infrared biomarkers of drug action were identified, enabling a molecular-level description of variations in cellular biochemistry upon drug exposure. The main changes were detected on the protein and lipid cellular components, namely on the ration of unsaturated-to-saturated fatty acids. QENS revealed a reduced water mobility within the cytoplasm for drug-treated cells, coupled to a disruption of the hydration layers of biomolecules. Additionally, the chemical and dynamical profiles of osteoscarcoma cells were compared to metastatic breast cancer, revealing distinct dissimilarities that may influence drug activity.
|
Jul 2019
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Open Access
Abstract: Fourier-transform infrared (FTIR) spectroscopy is a widespread and highly sensitive analytical method for the identification and characterization of a wide range of materials via their infrared (IR) absorption bands. Until now, the potential of IR microspectroscopy and imaging for the characterization of works of art or other objects of cultural heritage significance has been only partially exploited; in particular the use of the synchrotron radiation (SR) IR microprobe to study, at the micron scale, materials of interest for archaeological and cultural heritage studies has become popular only in the past decade. One of the main requirements imposed on the studies of ancient and/or valuable materials is that the techniques applied must be non-destructive. In this scenario, SRbased FTIR methods are perfectly suitable. Moreover, IR spectroscopy and imaging are emerging techniques that combine the assets of IR in terms of molecular specificity with the unique properties of synchrotron light. SR-FTIR micro-spectroscopy offers great advantages over conventional methods because it provides a broader spectrum (down to THz) and higher spectral quality (signal/noise ratio) at the highest spatial resolution (diffraction limited). This is due to the high brilliance and collimation of SR-IR, while still being non-damaging to the investigated system. The unique SR-IR parameters are essential for the compositional analysis of the tiny, sub-millimetric samples characteristic of ancient materials, which are heterogeneous by nature, and with complex molecular distributions at extremely variable concentrations. SR-FTIR spectroscopy and imaging can be applied successfully to the characterization of organic and inorganic materials via so-called IR fingerprinting, as well as for their compositional quantification. The range of materials investigated is very broad and encompasses painting materials, stones, glasses, ceramics, coatings on metals, paper and wooden materials, canvas or other textiles, organic colourants, resins, varnishes, cosmetics, and binding media such as glues, waxes, oils, etc. SR-IR-based methods can also be used to understand the historical technologies and to identify the raw materials used to produce archaeological artefacts and art objects, and to improve stabilization, conservation and restoration practices. Selected applications of SR-FTIR methods are discussed with a special emphasis on the chemical and mineralogical characterization of ancient paintings, on the study of alteration and corrosion layers, and the separation and identification of pigments. New perspectives offered by existing facilities and new developments in IR imaging and advanced vibrational spectroscopy that may broaden the variety of archaeological and historical materials that may be studied are outlined.
|
Jul 2019
|
|