I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[16557]
Open Access
Abstract: Achilles tendon rupture is a common debilitating medical condition. The healing process is slow and can be affected by heterotopic ossification (HO), which occurs when pathologic bone-like tissue is deposited instead of the soft collagenous tendon tissue. Little is known about the temporal and spatial progression of HO during Achilles tendon healing. In this study we characterize HO deposition, microstructure, and location at different stages of healing in a rat model. We use phase contrast-enhanced synchrotron microtomography, a state-of-the-art technique that allows 3D imaging at high-resolution of soft biological tissues without invasive or time-consuming sample preparation. The results increase our understanding of HO deposition, from the early inflammatory phase of tendon healing, by showing that the deposition is initiated as early as one week after injury in the distal stump and mostly growing on preinjury HO deposits. Later, more deposits form first in the stumps and then all over the tendon callus, merging into large, calcified structures, which occupy up to 10% of the tendon volume. The HOs were characterized by a looser connective trabecular-like structure and a proteoglycan-rich matrix containing chondrocyte-like cells with lacunae. The study shows the potential of 3D imaging at high-resolution by phase-contrast tomography to better understand ossification in healing tendons.
|
Jun 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
A.
Koko
,
S.
Singh
,
S.
Barhli
,
T.
Connolley
,
N. T.
Vo
,
T.
Wigger
,
D.
Liu
,
Y.
Fu
,
J.
Réthoré
,
J.
Lechambre
,
J.-Y.
Buffiere
,
T. J.
Marrow
Diamond Proposal Number(s):
[12585]
Open Access
Abstract: The propagation rate of a fatigue crack in a nodular cast iron, loaded in cyclic tension, has been studied in situ by X-ray computed tomography and digital volume correlation. The semi-elliptical crack initiated from an asymmetric corner notch and evolved to a semi-circular shape, initially with a higher growth rate towards one edge of the notch before the propagation rate along the crack front became essentially independent of po-sition. The phase congruency of the displacement field was used to measure the crack shape. The three-dimensional stress intensity factors were calculated via a linear elastic finite element model that used the displacement fields around the crack front as the boundary conditions. Closure of the crack tip region was observed. The cyclic change in the local mode I opening of the crack tip determined the local fatigue crack propaga-tion rate along the crack front.
|
May 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[26801]
Open Access
Abstract: Foaming during vitrification of radioactive waste in Joule-Heated Ceramic Melters (JHCM) is exacerbated by trapping of evolving gases, such as CO2, NOx and O2, beneath a viscous reaction layer. Foaming restricts heat transfer during melting. Sucrose is employed as the baseline additive at the Hanford site in Washington State, USA to reduce foaming. Alternative carbon-based reductant additives were explored in simulated, inactive Hanford high-iron HLW-NG-Fe2 feeds, for both their effect on foaming and to give insight to the behaviour of multivalent species in glass melts under different redox conditions. Graphite, coke (93% C), formic acid and HEDTA additives were compared with sucrose, and a feed with no additive. Graphite and coke additions proved most effective in reducing the maximum foam volume by 51 ± 3% and 54 ± 2%, respectively, compared with 24 ± 5% for sucrose. Lower foaming could result in more efficient vitrification in JHCMs. Reductants also affected redox ratios in the multivalent species present in the feed. The order of reduction, Mn3+/Mn2+ > Cr6+/Cr3+ > Ce3+/Ce4+ > Fe3+/Fe2+ was as predicted on the basis of their redox potentials. There is less reduction overall, particularly in the Fe3+ → Fe2+, than predicted by the calculations, attributed to the oxygenated atmosphere of the experiments.
|
May 2023
|
|
Krios I-Titan Krios I at Diamond
|
James M.
Parkhurst
,
Adam D.
Crawshaw
,
C. Alistair
Siebert
,
Maud
Dumoux
,
C. David
Owen
,
Pedro
Nunes
,
David
Waterman
,
Thomas
Glen
,
David I.
Stuart
,
James H.
Naismith
,
Gwyndaf
Evans
Open Access
Abstract: Three-dimensional electron diffraction (3DED) from nanocrystals of biological macromolecules requires the use of very small crystals. These are typically less than 300 nm-thick in the direction of the electron beam due to the strong interaction between electrons and matter. In recent years, focused-ion-beam (FIB) milling has been used in the preparation of thin samples for 3DED. These instruments typically use a gallium liquid metal ion source. Inductively coupled plasma (ICP) sources in principle offer faster milling rates. Little work has been done to quantify the damage these sources cause to delicate biological samples at cryogenic temperatures. Here, an analysis of the effect that milling with plasma FIB (pFIB) instrumentation has on lysozyme crystals is presented. This work evaluates both argon and xenon plasmas and compares them with crystals milled with a gallium source. A milling protocol was employed that utilizes an overtilt to produce wedge-shaped lamellae with a shallow thickness gradient which yielded very thin crystalline samples. 3DED data were then acquired and standard data-processing statistics were employed to assess the quality of the diffraction data. An upper bound to the depth of the pFIB-milling damage layer of between 42.5 and 50 nm is reported, corresponding to half the thickness of the thinnest lamellae that resulted in usable diffraction data. A lower bound of between 32.5 and 40 nm is also reported, based on a literature survey of the minimum amount of diffracting material required for 3DED.
|
May 2023
|
|
|
Ralf F.
Ziesche
,
Thomas M. M.
Heenan
,
Pooja
Kumari
,
Jarrod
Williams
,
Weiqun
Li
,
Matthew E.
Curd
,
Timothy L.
Burnett
,
Ian
Robinson
,
Dan J. L.
Brett
,
Matthias J.
Ehrhardt
,
Paul D.
Quinn
,
Layla B.
Mehdi
,
Philip J.
Withers
,
Melanie
Britton
,
Nigel D.
Browning
,
Paul R.
Shearing
Open Access
Abstract: Demand for low carbon energy storage has highlighted the importance of imaging techniques for the characterization of electrode microstructures to determine key parameters associated with battery manufacture, operation, degradation, and failure both for next generation lithium and other novel battery systems. Here, recent progress and literature highlights from magnetic resonance, neutron, X-ray, focused ion beam, scanning and transmission electron microscopy are summarized. Two major trends are identified: First, the use of multi-modal microscopy in a correlative fashion, providing contrast modes spanning length- and time-scales, and second, the application of machine learning to guide data collection and analysis, recognizing the role of these tools in evaluating large data streams from increasingly sophisticated imaging experiments.
|
May 2023
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[21484]
Open Access
Abstract: Using operando X-ray absorption spectroscopy in a continuous-flow microfluidic cell, we have investigated the nucleation of platinum nanoparticles from aqueous hexachloroplatinate solution in the presence of the reducing agent ethylene glycol. By adjusting flow rates in the microfluidic channel, we resolved the temporal evolution of the reaction system in the first few seconds, generating the time profiles for speciation, ligand exchange, and reduction of Pt. Detailed analysis of the X-ray absorption near-edge structure and extended X-ray absorption fine structure spectra with multivariate data analysis shows that at least two reaction intermediates are involved in the transformation of the precursor H2PtCl6 to metallic platinum nanoparticles, including the formation of clusters with Pt–Pt bonding before complete reduction to Pt nanoparticles.
|
May 2023
|
|
I22-Small angle scattering & Diffraction
|
Minghui
Sun
,
Zheng
Dong
,
Liyuan
Wu
,
Haodong
Yao
,
Wenchao
Niu
,
Deting
Xu
,
Ping
Chen
,
Himadri S.
Gupta
,
Yi
Zhang
,
Yuhui
Dong
,
Chunying
Chen
,
Lina
Zhao
Open Access
Abstract: Structural disclosure of biological materials can help our understanding of design disciplines in nature and inspire research for artificial materials. Synchrotron microfocus X-ray diffraction is one of the main techniques for characterizing hierarchically structured biological materials, especially the 3D orientation distribution of their interpenetrating nanofiber networks. However, extraction of 3D fiber orientation from X-ray patterns is still carried out by iterative parametric fitting, with disadvantages of time consumption and demand for expertise and initial parameter estimates. When faced with high-throughput experiments, existing analysis methods cannot meet the real time analysis challenges. In this work, using the assumption that the X-ray illuminated volume is dominated by two groups of nanofibers in a gradient biological composite, a machine-learning based method is proposed for fast and automatic fiber orientation metrics prediction from synchrotron X-ray micro-focused diffraction data. The simulated data were corrupted in the training procedure to guarantee the prediction ability of the trained machine-learning algorithm in real-world experimental data predictions. Label transformation was used to resolve the jump discontinuity problem when predicting angle parameters. The proposed method shows promise for application in the automatic data-processing pipeline for fast analysis of the vast data generated from multiscale diffraction-based tomography characterization of textured biomaterials.
|
May 2023
|
|
I15-Extreme Conditions
|
A. L. J.
Pereira
,
J. A.
Sans
,
O.
Gomis
,
D.
Santamaria-Perez
,
S.
Ray
,
A.
Godoy
,
A. S.
Da Silva-Sobrinho
,
P.
Rodríguez-Hernández
,
A.
Muñoz
,
C.
Popescu
,
F. J.
Manjon
Diamond Proposal Number(s):
[6073]
Open Access
Abstract: We report a joint experimental and theoretical study of the structural and vibrational properties of C-type bulk Y2O3 under hydrostatic compression. The combination of high-pressure X-ray diffraction and Raman scattering experimental measurements with ab initio theoretical calculations on bulk Y2O3 allows us to confirm the cubic (C-type) - monoclinic (B-type) - trigonal (A-type) phase transition sequence on the upstroke and the trigonal-monoclinic phase transition on the downstroke. This result reconciles with the results already found in related rare-earth sesquioxides of cations with similar ionic radii as Y, such as Ho2O3 and Dy2O3, and ends with the controversy regarding the existence of the intermediate monoclinic phase between the cubic and trigonal phases in pure bulk Y2O3 on the upstroke. As a byproduct, the good agreement between experimental and calculated results allows us to use extensive theoretical data to discuss the structural and vibrational behavior of the three phases of Y2O3 under compression, thus allowing a more detailed understanding of the effect of pressure on rare-earth sesquioxides than previous studies.
|
May 2023
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[20481, 27656]
Open Access
Abstract: We outline techniques for the control and measurement of the nucleation of crystalline material.
SAXS/WAXS XRD measurements are presented that demonstrate the impact of low power,
continuous, non-cavitational ultrasound on the nucleation and crystallisation of a wax; n-eicosane
dissolved in heptane/toluene solvent. A mathematical-physical approach based on rectification of
heat and mass transport by such a low power oscillating pressure field is outlined and it is suggested
that this approach be combined with dissipative particle dynamics (DPD) computational modelling to
develop a predictive method capable of modelling the impact of low power oscillating pressure
fields (acoustics and ultrasonics) on a wide range of nucleating systems. Combining ultrasound pitch
and catch speed of sound measurements with low power harmonically oscillating pressure fields to
monitor and control nucleation presents the prospect of entirely new industrially significant
methods of process control in crystallisation. It also offers new insights into nucleation processes in
general. However, for the acoustic control technique to be applied widely, further theoretical and
modelling work will be necessary since at present, we are unable to predict the precise effect of low
power ultrasound in any given situation.
|
May 2023
|
|
I11-High Resolution Powder Diffraction
|
F.
Duarte Martinez
,
A.
Syed
,
K.
Dawson
,
G. J.
Tatlock
,
N. I.
Morar
,
M.
Kothari
,
C.
Tang
,
J.
Leggett
,
J. C.
Mason-Flucke
,
G.
Gibson
,
J.r.
Nicholls
,
S.
Gray
,
G. M.
Castelluccio
Open Access
Abstract: In the pursuit of more efficient gas turbine engines, components are required to operate for longer times at elevated temperatures. This increased time in service, together with a complex loading regime, can expose the material to environmental attack. This work has demonstrated that the interaction of stress, NaCl and a sulphur-containing environment is critical to cause crack initiation in the early stages of the exposure and accelerated corrosion rates in CMSX-4 at 550°C. The effect of having small concentrations of moisture in the gaseous environment or as water crystallisation in the salt is still to be investigated. A working hypothesis is that the interaction of alkali chlorides with a sulphur-containing atmosphere is the trigger to a self-sustaining cycle where metal chloride formation, vaporisation and oxidation lead to high amounts of hydrogen injection in a rapid manner and, therefore, hydrogen embrittlement.
|
May 2023
|
|