|
Open Access
Abstract: We studied the impact of achiral substituents on the chiral supramolecular architectures of diketopyrrolo[3,4-c]pyrrole–1,2,3-1H-triazole (DPP) dyes. We decorated the same chiral DPP motif with substituent groups on the nitrogen atoms of the lactam moiety: the hydrophobic n-octyl alkyl chain, the hydrophilic triethylene glycol (TEG) chain and the thermo-cleavable t-butoxycarbonyl (t-Boc) carbamate group. In spite of identical conjugated chromophore and chiral appendage, in aggregated form the three dyes displayed profoundly different optical, chiroptical, electrochemical and thermal features. ECD measurements revealed differences in the aggregation modes, which would be inaccessible by most other techniques. We found strong chiroptical features, which would have major implications in the context of chiral organic opto-electronics and in the development of other highly innovative technological applications.
|
Mar 2023
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[23285]
Abstract: The ability to control the in-plane magnetic anisotropy of a thin film is important for magnetic device applications. One way of accomplishing this task is by glancing angle deposition (GLAD). In this study, thin Co layers have been deposited using GLAD magnetron sputtering on MgO(001) and MgO(110) substrates. For Co films on MgO(001), the in-plane anisotropy direction can be directly controlled via the deposition angle. In contrast, for Co on MgO(110), the anisotropy due to the deposition angle is competing with the anisotropy induced by the substrate, while the growth parameters determine which contribution dominates. On the other hand, while on MgO(001) the deposition angle as well as the film thickness affect the strength of the Co in-plane anisotropy, no influence of these parameters on the magnetic properties is found for films on MgO(110).
|
Mar 2023
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Xiang
Ding
,
Charles C.
Tam
,
Xuelei
Sui
,
Yan
Zhao
,
Minghui
Xu
,
Jaewon
Choi
,
Huaqian
Leng
,
Ji
Zhang
,
Mei
Wu
,
Haiyan
Xiao
,
Xiaotao
Zu
,
Mirian
Garcia-Fernandez
,
Stefano
Agrestini
,
Xiaoqiang
Wu
,
Qingyuan
Wang
,
Peng
Gao
,
Sean
Li
,
Bing
Huang
,
Ke-Jin
Zhou
,
Liang
Qiao
Diamond Proposal Number(s):
[30296]
Abstract: The newly discovered nickelate superconductors so far only exist in epitaxial thin films synthesized by a topotactic reaction with metal hydrides1. This method changes the nickelates from the perovskite to an infinite-layer structure by deintercalation of apical oxygens1,2,3. Such a chemical reaction may introduce hydrogen (H), influencing the physical properties of the end materials4,5,6,7,8,9. Unfortunately, H is insensitive to most characterization techniques and is difficult to detect because of its light weight. Here, in optimally Sr doped Nd0.8Sr0.2NiO2H epitaxial films, secondary-ion mass spectroscopy shows abundant H existing in the form of Nd0.8Sr0.2NiO2Hx (x ≅ 0.2–0.5). Zero resistivity is found within a very narrow H-doping window of 0.22 ≤ x ≤ 0.28, showing unequivocally the critical role of H in superconductivity. Resonant inelastic X-ray scattering demonstrates the existence of itinerant interstitial s (IIS) orbitals originating from apical oxygen deintercalation. Density functional theory calculations show that electronegative H– occupies the apical oxygen sites annihilating IIS orbitals, reducing the IIS–Ni 3d orbital hybridization. This leads the electronic structure of H-doped Nd0.8Sr0.2NiO2Hx to be more two-dimensional-like, which might be relevant for the observed superconductivity. We highlight that H is an important ingredient for superconductivity in epitaxial infinite-layer nickelates.
|
Mar 2023
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[24219, 31681]
Abstract: Wide bandgap oxide semiconductors have gained significant attention in the fields from flat panel displays to solar cells, but their uses have been limited by the lack of high mobility p-type oxide semiconductors. Recently, β-phase TeO2 has been identified as a promising p-type oxide semiconductor with exceptional device performance. In this Letter, we report on the electronic structure of β-TeO2 studied by a combination of high-resolution x-ray spectroscopy and hybrid density functional theory calculations. The bulk bandgap of β-TeO2 is determined to be 3.7 eV. Direct comparisons between experimental and computational results demonstrate that the top of a valence band (VB) of β-TeO2 is composed of the hybridized Te 5s, Te 5p, and O 2p states, whereas a conduction band (CB) is dominated by unoccupied Te 5p states. The hybridization between spatially dispersive Te 5s2 states and O 2p orbitals helps us to alleviate the strong localization in the VB, leading to small hole effective mass and high hole mobility in β-TeO2. The Te 5p states provide stabilizing effect to the hybridized Te 5s-O 2p states, which is enabled by structural distortions of a β-TeO2 lattice. The multiple advantages of large bandgap, high hole mobility, two-dimensional structure, and excellent stability make β-TeO2 a highly competitive material for next-generation opto-electronic devices.
|
Mar 2023
|
|
I10-Beamline for Advanced Dichroism
|
Diamond Proposal Number(s):
[16141]
Open Access
Abstract: Owing to the unique chemical and electronic properties arising from 3d-electrons, substitution with transition metal ions is one of the key routes for engineering new functionalities into materials. While this approach has been used extensively in complex metal oxide perovskites, metal halide perovskites have largely resisted facile isovalent substitution. In this work, it is demonstrated that the substitution of Co2+ into the lattice of methylammonium lead triiodide imparts magnetic behavior to the material while maintaining photovoltaic performance at low concentrations. In addition to comprehensively characterizing its magnetic properties, the Co2+ ions themselves are utilized as probes to sense the local electronic environment of Pb in the perovskite, thereby revealing the nature of their incorporation into the material. A comprehensive understanding of the effect of transition metal incorporation is provided, thereby opening the substitution gateway for developing novel functional perovskite materials and devices for future technologies.
|
Mar 2023
|
|
I07-Surface & interface diffraction
|
Yuqi
Sun
,
Lishuang
Ge
,
Linjie
Dai
,
Changsoon
Cho
,
Jordi
Ferrer Orri
,
Kangyu
Ji
,
Szymon J.
Zelewski
,
Yun
Liu
,
Alessandro J.
Mirabelli
,
Youcheng
Zhang
,
Jun-Yu
Huang
,
Yusong
Wang
,
Ke
Gong
,
May Ching
Lai
,
Lu
Zhang
,
Dan
Yang
,
Jiudong
Lin
,
Elizabeth M.
Tennyson
,
Caterina
Ducati
,
Samuel D.
Stranks
,
Lin-Song
Cui
,
Neil C.
Greenham
Diamond Proposal Number(s):
[30575]
Abstract: Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm−2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm−2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm−2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm−2, along with a high radiance of more than 3,200 W s−1 m−2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s−1 m−2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.
|
Mar 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[14239]
Open Access
Abstract: Sulfur-deficient SnS thin films for sodium-ion battery anode application are prepared using aerosol-assisted chemical vapor deposition. Growth directly onto the metal foil current collector forms sulfur-deficient SnS microrod structures via a vapor–liquid–solid growth mechanism, with 92 nm average SnS crystallite size and an 800 nm film thickness. The sulfur deficiency is demonstrated with energy-dispersive X-ray analysis, powder X-ray diffraction, and X-ray absorption near-edge structure analyses. This sulfur-deficient SnS material demonstrates a very high capacity in sodium half cells. The first reduction scan at a specific current of 150 mA g−1 shows a capacity of 1084 mAh g−1. At the 50th cycle the specific capacity is 638 mAh g−1 for reduction and 593 mAh g−1 for oxidation. This capacity is demonstrated for tin sulfide itself without the need for a nanostructured carbon support, unlike previous high capacity SnS anodes in the literature. Both the capacity and ex situ characterization experiments indicate a conversion reaction producing tin, followed by alloying with sodium during reduction, and that both of these processes are reversible during oxidation.
|
Feb 2023
|
|
I05-ARPES
|
Edgar
Abarca Morales
,
Gesa-R.
Siemann
,
Andela
Zivanovic
,
Philip A. E.
Murgatroyd
,
Igor
Markovic
,
Brendan
Edwards
,
Chris A.
Hooley
,
Dmitry A.
Sokolov
,
Naoki
Kikugawa
,
Cephise
Cacho
,
Matthew D.
Watson
,
Timur K.
Kim
,
Clifford W.
Hicks
,
Andrew P.
Mackenzie
,
Phil D. C.
King
Diamond Proposal Number(s):
[27471, 28412]
Abstract: We report the evolution of the electronic structure at the surface of the layered perovskite
Sr
2
RuO
4
under large in-plane uniaxial compression, leading to anisotropic
B
1
g
strains of
ϵ
x
x
−
ϵ
y
y
=
−
0.9
±
0.1
%
. From angle-resolved photoemission, we show how this drives a sequence of Lifshitz transitions, reshaping the low-energy electronic structure and the rich spectrum of van Hove singularities that the surface layer of
Sr
2
RuO
4
hosts. From comparison to tight-binding modeling, we find that the strain is accommodated predominantly by bond-length changes rather than modifications of octahedral tilt and rotation angles. Our study sheds new light on the nature of structural distortions at oxide surfaces, and how targeted control of these can be used to tune density of state singularities to the Fermi level, in turn paving the way to the possible realization of rich collective states at the
Sr
2
RuO
4
surface.
|
Feb 2023
|
|
I07-Surface & interface diffraction
|
Elena J.
Cassella
,
Emma L. K.
Spooner
,
Joel A.
Smith
,
Timothy
Thornber
,
Mary E.
O'Kane
,
Robert D. J.
Oliver
,
Thomas E.
Catley
,
Saqlain
Choudhary
,
Christopher J.
Wood
,
Deborah B.
Hammond
,
Henry J.
Snaith
,
David G.
Lidzey
Diamond Proposal Number(s):
[30612]
Open Access
Abstract: High temperature post-deposition annealing of hybrid lead halide perovskite thin films—typically lasting at least 10 min—dramatically limits the maximum roll-to-roll coating speed, which determines solar module manufacturing costs. While several approaches for “annealing-free” perovskite solar cells (PSCs) have been demonstrated, many are of limited feasibility for scalable fabrication. Here, this work has solvent-engineered a high vapor pressure solvent mixture of 2-methoxy ethanol and tetrahydrofuran to deposit highly crystalline perovskite thin-films at room temperature using gas-quenching to remove the volatile solvents. Using this approach, this work demonstrates p-i-n devices with an annealing-free MAPbI3 perovskite layer achieving stabilized power conversion efficiencies (PCEs) of up to 18.0%, compared to 18.4% for devices containing an annealed perovskite layer. This work then explores the deposition of self-assembled molecules as the hole-transporting layer without annealing. This work finally combines the methods to create fully annealing-free devices having stabilized PCEs of up to 17.1%. This represents the state-of-the-art for annealing-free fabrication of PSCs with a process fully compatible with roll-to-roll manufacture.
|
Feb 2023
|
|
I06-Nanoscience
|
Diamond Proposal Number(s):
[14135]
Abstract: The size of the orbital moment in
Fe
3
O
4
has been the subject of a long-standing and contentious debate. In this paper, we make use of ferromagnetic resonance (FMR) spectroscopy and x-ray magnetic circular dichroism (XMCD) to provide complementary determinations of the size of the orbital moment in “bulklike” epitaxial
Fe
3
O
4
films grown on yttria-stabilized zirconia (111) substrates. Annealing the 100 nm as-grown films to
1100
∘
C
in a reducing atmosphere improves the stoichiometry and microstructure of the films, allowing for bulklike properties to be recovered as evidenced by x-ray diffraction and vibrating sample magnetometry. In addition, in-plane angular FMR spectra exhibit a crossover from a fourfold symmetry to the expected sixfold symmetry of the (111) surface, together with an anomalous peak in the FMR linewidth at
∼
10
GHz; this is indicative of low Gilbert damping in combination with two-magnon scattering. For the bulklike annealed sample, a spectroscopic splitting factor
g
≈
2.18
is obtained using both FMR and XMCD techniques, providing evidence for the presence of a finite orbital moment in
Fe
3
O
4
.
|
Feb 2023
|
|