I15-1-X-ray Pair Distribution Function (XPDF)
|
Federica
Bravetti
,
Lukas
Tapmeyer
,
Kathrin
Skorodumov
,
Edith
Alig
,
Stefan
Habermehl
,
Robert
Hühn
,
Simone
Bordignon
,
Angelo
Gallo
,
Carlo
Nervi
,
Michele R.
Chierotti
,
Martin U.
Schmidt
Diamond Proposal Number(s):
[19820]
Open Access
Abstract: Leucopterin (C6H5N5O3) is the white pigment in the wings of Pieris brassicae butterflies, and other butterflies; it can also be found in wasps and other insects. Its crystal structure and its tautomeric form in the solid state were hitherto unknown. Leucopterin turned out to be a variable hydrate, with 0.5 to about 0.1 molecules of water per leucopterin molecule. Under ambient conditions, the preferred state is the hemihydrate. Initially, all attempts to grow single crystals suitable for X-ray diffraction were to no avail. Attempts to determine the crystal structure by powder diffraction using the direct-space method failed, because the trials did not include the correct, but rare, space group P2/c. Attempts were made to solve the crystal structure by a global fit to the pair distribution function (PDF-Global-Fit), as described by Prill and co-workers [Schlesinger et al. (2021[Schlesinger, C., Habermehl, S. & Prill, D. (2021). J. Appl. Cryst. 54, 776-786.]). J. Appl. Cryst. 54, 776–786]. The approach worked well, but the correct structure was not found, because again the correct space group was not included. Finally, tiny single crystals of the hemihydrate could be obtained, which allowed at least the determination of the crystal symmetry and the positions of the C, N and O atoms. The tautomeric state of the hemihydrate was assessed by multinuclear solid-state NMR spectroscopy. 15N CPMAS spectra showed the presence of one NH2 and three NH groups, and one unprotonated N atom, which agreed with the 1H MAS and 13C CPMAS spectra. Independently, the tautomeric state was investigated by lattice-energy minimizations with dispersion-corrected density functional theory (DFT-D) on 17 different possible tautomers, which also included the prediction of the corresponding 1H, 13C and 15N chemical shifts in the solid. All methods showed the presence of the 2-amino-3,5,8-H tautomer. The DFT-D calculations also confirmed the crystal structure. Heating of the hemihydrate results in a slow release of water between 130 and 250 °C, as shown by differential thermal analysis and thermogravimetry (DTA-TG). Temperature-dependent powder X-ray diffraction (PXRD) showed an irreversible continuous shift of the reflections upon heating, which reveals that leucopterin is a variable hydrate. This observation was also confirmed by PXRD of samples obtained under various synthetic and drying conditions. The crystal structure of a sample with about 0.2 molecules of water per leucopterin was solved by a fit with deviating lattice parameters (FIDEL), as described by Habermehl et al. [Acta Cryst. (2022[Habermehl, S., Schlesinger, C. & Schmidt, M. U. (2022). Acta Cryst. B78, 195-213.]), B78, 195–213]. A local fit, starting from the structure of the hemihydrate, as well as a global fit, starting from random structures, were performed, followed by Rietveld refinements. Despite dehydration, the space group remains P2/c. In both structures (hemihydrate and variable hydrate), the leucopterin molecules are connected by 2–4 hydrogen bonds into chains, which are connected by further hydrogen bonds to neighbouring chains. The molecular packing is very efficient. The density of leucopterin hemihydrate is as high as 1.909 kg dm−3, which is one of the highest densities for organic compounds consisting of C, H, N and O only. The high density might explain the good light-scattering and opacity properties of the wings of Pieris brassicae and other butterflies.
|
Jul 2023
|
|
Krios I-Titan Krios I at Diamond
|
James M.
Parkhurst
,
Adam D.
Crawshaw
,
C. Alistair
Siebert
,
Maud
Dumoux
,
C. David
Owen
,
Pedro
Nunes
,
David
Waterman
,
Thomas
Glen
,
David I.
Stuart
,
James H.
Naismith
,
Gwyndaf
Evans
Open Access
Abstract: Three-dimensional electron diffraction (3DED) from nanocrystals of biological macromolecules requires the use of very small crystals. These are typically less than 300 nm-thick in the direction of the electron beam due to the strong interaction between electrons and matter. In recent years, focused-ion-beam (FIB) milling has been used in the preparation of thin samples for 3DED. These instruments typically use a gallium liquid metal ion source. Inductively coupled plasma (ICP) sources in principle offer faster milling rates. Little work has been done to quantify the damage these sources cause to delicate biological samples at cryogenic temperatures. Here, an analysis of the effect that milling with plasma FIB (pFIB) instrumentation has on lysozyme crystals is presented. This work evaluates both argon and xenon plasmas and compares them with crystals milled with a gallium source. A milling protocol was employed that utilizes an overtilt to produce wedge-shaped lamellae with a shallow thickness gradient which yielded very thin crystalline samples. 3DED data were then acquired and standard data-processing statistics were employed to assess the quality of the diffraction data. An upper bound to the depth of the pFIB-milling damage layer of between 42.5 and 50 nm is reported, corresponding to half the thickness of the thinnest lamellae that resulted in usable diffraction data. A lower bound of between 32.5 and 40 nm is also reported, based on a literature survey of the minimum amount of diffracting material required for 3DED.
|
May 2023
|
|
I22-Small angle scattering & Diffraction
|
Minghui
Sun
,
Zheng
Dong
,
Liyuan
Wu
,
Haodong
Yao
,
Wenchao
Niu
,
Deting
Xu
,
Ping
Chen
,
Himadri S.
Gupta
,
Yi
Zhang
,
Yuhui
Dong
,
Chunying
Chen
,
Lina
Zhao
Open Access
Abstract: Structural disclosure of biological materials can help our understanding of design disciplines in nature and inspire research for artificial materials. Synchrotron microfocus X-ray diffraction is one of the main techniques for characterizing hierarchically structured biological materials, especially the 3D orientation distribution of their interpenetrating nanofiber networks. However, extraction of 3D fiber orientation from X-ray patterns is still carried out by iterative parametric fitting, with disadvantages of time consumption and demand for expertise and initial parameter estimates. When faced with high-throughput experiments, existing analysis methods cannot meet the real time analysis challenges. In this work, using the assumption that the X-ray illuminated volume is dominated by two groups of nanofibers in a gradient biological composite, a machine-learning based method is proposed for fast and automatic fiber orientation metrics prediction from synchrotron X-ray micro-focused diffraction data. The simulated data were corrupted in the training procedure to guarantee the prediction ability of the trained machine-learning algorithm in real-world experimental data predictions. Label transformation was used to resolve the jump discontinuity problem when predicting angle parameters. The proposed method shows promise for application in the automatic data-processing pipeline for fast analysis of the vast data generated from multiscale diffraction-based tomography characterization of textured biomaterials.
|
May 2023
|
|
I24-Microfocus Macromolecular Crystallography
|
Tadeo
Moreno-Chicano
,
Leiah M.
Carey
,
Danny
Axford
,
John H.
Beale
,
R. Bruce
Doak
,
Helen M. E.
Duyvesteyn
,
Ali
Ebrahim
,
Robert W.
Henning
,
Diana C. F.
Monteiro
,
Dean A.
Myles
,
Shigeki
Owada
,
Darren A.
Sherrell
,
Megan L.
Straw
,
Vukica
Šrajer
,
Hiroshi
Sugimoto
,
Kensuke
Tono
,
Takehiko
Tosha
,
Ivo
Tews
,
Martin
Trebbin
,
Richard W.
Strange
,
Kevin L.
Weiss
,
Jonathan A. R.
Worrall
,
Flora
Meilleur
,
Robin L.
Owen
,
Reza A.
Ghiladi
,
Michael A.
Hough
Diamond Proposal Number(s):
[14493]
Open Access
Abstract: Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources. In this study, structures of a multifunctional globin, dehaloperoxidase B (DHP-B), obtained using several methods of room-temperature crystallographic structure determination are described and compared. Here, data were measured from large single crystals and multiple microcrystals using neutrons, X-ray free-electron laser pulses, monochromatic synchrotron radiation and polychromatic (Laue) radiation light sources. These approaches span a range of 18 orders of magnitude in measurement time per diffraction pattern and four orders of magnitude in crystal volume. The first room-temperature neutron structures of DHP-B are also presented, allowing the explicit identification of the hydrogen positions. The neutron data proved to be complementary to the serial femtosecond crystallography data, with both methods providing structures free of the effects of X-ray radiation damage when compared with standard cryo-crystallography. Comparison of these room-temperature methods demonstrated the large differences in sample requirements, data-collection time and the potential for radiation damage between them. With regard to the structure and function of DHP-B, despite the results being partly limited by differences in the underlying structures, new information was gained on the protonation states of active-site residues which may guide future studies of DHP-B.
|
Sep 2022
|
|
|
Open Access
Abstract: The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or Mpro, is a promising target for the development of novel antiviral therapeutics. Previous X-ray crystal structures of Mpro were obtained at cryogenic temperature or room temperature only. Here we report a series of high-resolution crystal structures of unliganded Mpro across multiple temperatures from cryogenic to physiological, and another at high humidity. We interrogate these data sets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a perturbation-dependent conformational landscape for Mpro, including a mobile zinc ion interleaved between the catalytic dyad, mercurial conformational heterogeneity at various sites including a key substrate-binding loop, and a far-reaching intramolecular network bridging the active site and dimer interface. Our results may inspire new strategies for antiviral drug development to aid preparation for future coronavirus pandemics.
|
Sep 2022
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Open Access
Abstract: Four different structural models, which all fit the same X-ray powder pattern, were obtained in the structure determination of 4,11-difluoroquinacridone (C20H10N2O2F2) from unindexed X-ray powder data by a global fit. The models differ in their lattice parameters, space groups, Z, Z′, molecular packing and hydrogen bond patterns. The molecules form a criss-cross pattern in models A and B, a layer structure built from chains in model C and a criss-cross arrangement of dimers in model D. Nevertheless, all models give a good Rietveld fit to the experimental powder pattern with acceptable R-values. All molecular geometries are reliable, except for model D, which is slightly distorted. All structures are crystallochemically plausible, concerning density, hydrogen bonds, intermolecular distances etc. All models passed the checkCIF test without major problems; only in model A a missed symmetry was detected. All structures could have probably been published, although 3 of the 4 structures were wrong. The investigation, which of the four structures is actually the correct one, was challenging. Six methods were used: (1) Rietveld refinements, (2) fit of the crystal structures to the pair distribution function (PDF) including the refinement of lattice parameters and atomic coordinates, (3) evaluation of the colour, (4) lattice-energy minimizations with force fields, (5) lattice-energy minimizations by two dispersion-corrected density functional theory methods, and (6) multinuclear CPMAS solid-state NMR spectroscopy (1H, 13C, 19F) including the comparison of calculated and experimental chemical shifts. All in all, model B (perhaps with some disorder) can probably be considered to be the correct one. This work shows that a structure determination from limited-quality powder data may result in totally different structural models, which all may be correct or wrong, even if they are chemically sensible and give a good Rietveld refinement. Additionally, the work is an excellent example that the refinement of an organic crystal structure can be successfully performed by a fit to the PDF, and the combination of computed and experimental solid-state NMR chemical shifts can provide further information for the selection of the most reliable structure among several possibilities.
|
Jul 2022
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[8997]
Open Access
Abstract: Radiopharmaceutical development has similar overall characteristics to any biomedical drug development requiring a compound's stability, aqueous solubility and selectivity to a specific disease site. However, organometallic complexes containing 188/186Re or 99mTc involve a d-block transition-metal radioactive isotope and therefore bring additional factors such as metal oxidation states, isotope purity and half life into play. This topical review is focused on the development of radiopharmaceuticals containing the radioisotopes of rhenium and technetium and, therefore, on the occurrence of these organometallic complexes in protein structures in the Worldwide Protein Data Bank (wwPDB). The purpose of incorporating the group 7 transition metals of rhenium/technetium in the protein and the reasons for study by protein crystallography are described, as certain PDB studies were not aimed at drug development. Technetium is used as a medical diagnostic agent and involves the 99mTc isotope which decays to release gamma radiation, thereby employed for its use in gamma imaging. Due to the periodic relationship among group 7 transition metals, the coordination chemistry of rhenium is similar (but not identical) to that of technetium. The types of reactions the potential model radiopharmaceutical would prefer to partake in, and by extension knowing which proteins and biomolecules the compound would react with in vivo, are needed. Crystallography studies, both small molecule and macromolecular, are a key aspect in understanding chemical coordination. Analyses of bonding modes, coordination to particular residues and crystallization conditions are presented. In our Forward look as a concluding summary of this topical review, the question we ask is: what is the best way for this field to progress?
|
Mar 2022
|
|
|
Open Access
|
Jan 2022
|
|
I24-Microfocus Macromolecular Crystallography
|
Open Access
Abstract: X-ray-induced radiation damage is a limiting factor for the macromolecular crystallographer and data must often be merged from many crystals to yield complete data sets for the structure solution of challenging samples. Increasing the X-ray energy beyond the typical 10–15 keV range promises to provide an extension of crystal lifetime via an increase in diffraction efficiency. To date, however, hardware limitations have negated any possible gains. Through the first use of a cadmium telluride EIGER2 detector and a beamline optimized for high-energy data collection, it is shown that at higher energies fewer crystals will be required to obtain complete data, as the diffracted intensity per unit dose increases by a factor of more than two between 12.4 and 25 keV. Additionally, these higher energy data can provide more information, as shown by a systematic increase in the high-resolution cutoff of the data collected. Taken together, these gains point to a high-energy future for synchrotron-based macromolecular crystallography.
|
Nov 2021
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19880]
Open Access
Abstract: Transcription factors are the primary regulators of gene expression and recognize specific DNA sequences under diverse physiological conditions. Although they are vital for many important cellular processes, it remains unclear when and how transcription factors and DNA interact. The antitoxin from a toxin–antitoxin system is an example of negative transcriptional autoregulation: during expression of the cognate toxin it is suppressed through binding to a specific DNA sequence. In the present study, the antitoxin HigA2 from Mycobacterium tuberculosis M37Rv was structurally examined. The crystal structure of M. tuberculosis HigA2 comprises three sections: an N-terminal autocleavage region, an α-helix bundle which contains an HTH motif, and a C-terminal β-lid. The N-terminal region is responsible for toxin binding, but was shown to cleave spontaneously in its absence. The HTH motif performs a key role in DNA binding, with the C-terminal β-lid influencing the interaction by mediating the distance between the motifs. However, M. tuberculosis HigA2 exhibits a unique coordination of the HTH motif and no DNA-binding activity is detected. Three crystal structures of M. tuberculosis HigA2 show a flexible alignment of the HTH motif, which implies that the motif undergoes structural rearrangement to interact with DNA. This study reveals the molecular mechanisms of how transcription factors interact with partner proteins or DNA.
|
Sep 2021
|
|