|
Yi-Ling
Chen
,
Jessica Soo Weei
Ng
,
Rosana
Ottakandathil Babu
,
Jeongmin
Woo
,
Janina
Nahler
,
Clare S.
Hardman
,
Prathiba
Kurupati
,
Lea
Nussbaum
,
Fei
Gao
,
Tao
Dong
,
Kristin
Ladell
,
David A.
Price
,
David A.
Duncan
,
David
Johnson
,
Uzi
Gileadi
,
Hashem
Koohy
,
Graham S.
Ogg
Abstract: Group A Streptococcus (GAS) infection is associated with multiple clinical sequelae, including different subtypes of psoriasis. Such post-streptococcal disorders have been long known but are largely unexplained. CD1a is expressed at constitutively high levels by Langerhans cells and presents lipid antigens to T cells, but the potential relevance to GAS infection has not been studied. Here, we investigated whether GAS-responsive CD1a-restricted T cells contribute to the pathogenesis of psoriasis. Healthy individuals had high frequencies of circulating and cutaneous GAS-responsive CD4+ and CD8+ T cells with rapid effector functions, including the production of interleukin-22 (IL-22). Human skin and blood single-cell CITE-seq analyses of IL-22–producing T cells showed a type 17 signature with proliferative potential, whereas IFN-γ–producing T cells displayed cytotoxic T lymphocyte characteristics. Furthermore, individuals with psoriasis had significantly higher frequencies of circulating GAS-reactive T cells, enriched for markers of activation, cytolytic potential, and tissue association. In addition to responding to GAS, subsets of expanded GAS-reactive T cell clones/lines were found to be autoreactive, which included the recognition of the self-lipid antigen lysophosphatidylcholine. CD8+ T cell clones/lines produced cytolytic mediators and lysed infected CD1a-expressing cells. Furthermore, we established cutaneous models of GAS infection in a humanized CD1a transgenic mouse model and identified enhanced and prolonged local and systemic inflammation, with resolution through a psoriasis-like phenotype. Together, these findings link GAS infection to the CD1a pathway and show that GAS infection promotes the proliferation and activation of CD1a-autoreactive T cells, with relevance to post-streptococcal disease, including the pathogenesis and treatment of psoriasis.
|
Jun 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[30411]
Abstract: Within the literature significant variations in martensite start temperature (Ms) can be observed for samples of identical composition. However, the factors affecting Ms are not well understood, limiting industrial uptake. Recently, claims that the isothermal variant of the ω phase (ωiso) may be driving many changes in Ms have been called into question due to the absence of any compositionally distinct ωiso following thermal cycling. In the present study, in situ synchrotron X-ray diffraction has been employed to conclusively show that dramatic changes in Ms can be replicated without any formation of ωiso. Dislocations have been shown to be mobile at the temperatures reached and, as such, an alternative mechanism based on the total stress model has been proposed. This added understanding can rationalise many of the discrepancies observed in the literature, and ultimately improve industrial uptake of this class of material.
|
Jun 2023
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[26630]
Open Access
Abstract: The performance of organic solar cells is strongly governed by the properties of the photovoltaic active layer. In particular, the energetics at the donor (D)–acceptor (A) interface dictate the properties of charge transfer (CT) states and limit the open-circuit voltage. More generally, energetic landscapes in thin films are affected by intermolecular, e.g., van der Waals, dipole, and quadrupole, interactions that vary with D:A mixing ratio and impact energy levels of free charges (ionization energy, electron affinity) and excitons (singlet, CT states). Disentangling how different intermolecular interactions impact energy levels and support or hinder free charge generation is still a major challenge. In this work, we investigate interface energetics of bulk heterojunctions via sensitive external quantum efficiency measurements and by varying the D:A mixing ratios of ZnPc or its fluorinated derivatives and C60. With increasing donor fluorination, the energetic offset between FxZnPc and C60 reduces. Moving from large to low offset systems, we find qualitatively different trends in device performances with D:C60 mixing ratios. We rationalize the performance trends via changes in the energy levels that govern exciton separation and voltage losses. We do so by carefully analyzing shifts and broadening sEQE spectra on a linear and logarithmic scale. Linking this analysis with molecular properties and device performance, we comment on the impact of charge–quadrupole interactions for CT dissociation and free charge generation in our D:C60 blends. With this, our work (1) demonstrates how relatively accessible characterization techniques can be used to probe energy levels and (2) addresses ongoing discussions on future molecular design and optimal D–A pairing for efficient CT formation and dissociation.
|
Jun 2023
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12346, 18069]
Open Access
Abstract: In the mammalian DNA damage response, ADP-ribosylation signalling is of crucial importance to mark sites of DNA damage as well as recruit and regulate repairs factors. Specifically, the PARP1:HPF1 complex recognises damaged DNA and catalyses the formation of serine-linked ADP-ribosylation marks (mono-Ser-ADPr), which are extended into ADP-ribose polymers (poly-Ser-ADPr) by PARP1 alone. Poly-Ser-ADPr is reversed by PARG, while the terminal mono-Ser-ADPr is removed by ARH3. Despite its significance and apparent evolutionary conservation, little is known about ADP-ribosylation signalling in non-mammalian Animalia. The presence of HPF1, but absence of ARH3, in some insect genomes, including Drosophila species, raises questions regarding the existence and reversal of serine-ADP-ribosylation in these species. Here we show by quantitative proteomics that Ser-ADPr is the major form of ADP-ribosylation in the DNA damage response of Drosophila melanogaster and is dependent on the dParp1:dHpf1 complex. Moreover, our structural and biochemical investigations uncover the mechanism of mono-Ser-ADPr removal by Drosophila Parg. Collectively, our data reveal PARP:HPF1-mediated Ser-ADPr as a defining feature of the DDR in Animalia. The striking conservation within this kingdom suggests that organisms that carry only a core set of ADP-ribosyl metabolising enzymes, such as Drosophila, are valuable model organisms to study the physiological role of Ser-ADPr signalling.
|
Jun 2023
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[19354, 22976]
Open Access
Abstract: Laser powder bed fusion (LPBF) additive manufacturing of 2XXX series Al alloys could be used for low volume specialist aerospace components, however, such alloys exhibit hot cracking susceptibility that can lead to component failure. In this study, we show two approaches to suppress the formation of hot cracks by controlling solidification behaviour using: (1) TiB2 additions; and (2) optimisation of LPBF process parameters. Using high-speed synchrotron X-ray radiography, we monitored LPBF of Al-2139 in situ, with and without TiB2 under a range of process conditions. In situ X-ray radiography results captured the crack growth over 1.0 ms at a rate of ca. 110 mm s-1, as well as pore evolution, wetting behaviour and build height. High-resolution synchrotron X-ray computed tomography (sCT) was used to measure the volume fraction of defects, e.g. hydrogen pores and microcracks, in the as-built LPBF samples. Our results show adding TiB2 in Al-2139 reduces the volume of cracks by up to 79 % under a volume energy density of 1000 to 5000 J mm-3, as well as reducing the average length, breadth, and surface area of cracks.
|
Jun 2023
|
|
B18-Core EXAFS
|
Open Access
Abstract: The CO2-assisted oxidative dehydrogenation reaction can possibly become a more sustainable alternative for the production of light olefins. Due to the endothermic nature of this reaction, elevated reaction temperatures are required to achieve conversion levels of interest, with competing side reactions as result. In this study, the effect of reaction temperature on the performance of silica supported molybdenum carbide nanoparticles is investigated. At all applied reaction temperatures, the maximum possible ethylene selectivity of 67 C-% is achieved. An increase in reaction temperature decreases the oxidation of the catalyst under reaction conditions. However, a clear phase change effect on the various carbide allotropes suggests that an oxidation/re-carburization mechanism occurs from β-Mo2C to MoOxCy/MoO2 to α-MoC1-x/β-Mo2C, rather than a prevention of the oxidation in the first place. Nevertheless, catalyst deactivation was still observed and can be assigned to carbon formation on the surface of the catalyst, blocking active sites.
|
Jun 2023
|
|
|
Open Access
Abstract: Ordered mesoporous silicas are important technological materials in catalysis, sorption and separation science, however new architectures are desired to improve in-pore accessibility. Here we report the first synthesis of an ordered macroporous KIT-6, obtained by optimizing the ratios of Pluronic P123: sodium dodecyl sulfate cosurfactants, and a 400 nm polystyrene nanosphere macropore template. The macroporous KIT-6 possesses 370 nm macropores in a face-centered cubic arrangement, surrounded by a silica framework comprised of cubic Ia
d three-dimensional, intertwined 5 nm mesopore channels. Propylsulfonic acid (PrSO3H) functionalization affords a macroporous KIT-6 solid acid catalyst whose hierarchical pore network permits rapid diffusion and esterification of fatty acids, conferring a five-fold enhancement for palmitic acid esterification compared with a conventional mesoporous PrSO3H/KIT-6, and 33% rate enhancement vs. an ordered macroporous PrSO3H/SBA-15.
|
Jun 2023
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[16557]
Open Access
Abstract: Achilles tendon rupture is a common debilitating medical condition. The healing process is slow and can be affected by heterotopic ossification (HO), which occurs when pathologic bone-like tissue is deposited instead of the soft collagenous tendon tissue. Little is known about the temporal and spatial progression of HO during Achilles tendon healing. In this study we characterize HO deposition, microstructure, and location at different stages of healing in a rat model. We use phase contrast-enhanced synchrotron microtomography, a state-of-the-art technique that allows 3D imaging at high-resolution of soft biological tissues without invasive or time-consuming sample preparation. The results increase our understanding of HO deposition, from the early inflammatory phase of tendon healing, by showing that the deposition is initiated as early as one week after injury in the distal stump and mostly growing on preinjury HO deposits. Later, more deposits form first in the stumps and then all over the tendon callus, merging into large, calcified structures, which occupy up to 10% of the tendon volume. The HOs were characterized by a looser connective trabecular-like structure and a proteoglycan-rich matrix containing chondrocyte-like cells with lacunae. The study shows the potential of 3D imaging at high-resolution by phase-contrast tomography to better understand ossification in healing tendons.
|
Jun 2023
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Javier O.
Cifuente
,
Julia
Schulze
,
Andrea
Bethe
,
Valerio
Di Domenico
,
Christa
Litschko
,
Insa
Budde
,
Lukas
Eidenberger
,
Hauke
Thiesler
,
Isabel
Ramón Roth
,
Monika
Berger
,
Heike
Claus
,
Cecilia
D'Angelo
,
Alberto
Marina
,
Rita
Gerardy-Schahn
,
Mario
Schubert
,
Marcelo E.
Guerin
,
Timm
Fiebig
Diamond Proposal Number(s):
[28360]
Open Access
Abstract: Bacterial capsules have critical roles in host-pathogen interactions. They provide a protective envelope against host recognition, leading to immune evasion and bacterial survival. Here we define the capsule biosynthesis pathway of Haemophilus influenzae serotype b (Hib), a Gram-negative bacterium that causes severe infections in infants and children. Reconstitution of this pathway enabled the fermentation-free production of Hib vaccine antigens starting from widely available precursors and detailed characterization of the enzymatic machinery. The X-ray crystal structure of the capsule polymerase Bcs3 reveals a multi-enzyme machine adopting a basket-like shape that creates a protected environment for the synthesis of the complex Hib polymer. This architecture is commonly exploited for surface glycan synthesis by both Gram-negative and Gram-positive pathogens. Supported by biochemical studies and comprehensive 2D nuclear magnetic resonance, our data explain how the ribofuranosyltransferase CriT, the phosphatase CrpP, the ribitol-phosphate transferase CroT and a polymer-binding domain function as a unique multi-enzyme assembly.
|
Jun 2023
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[26409]
Abstract: Rozenite (FeSO4·4H2O) is a candidate mineral component of the polyhydrated sulfate deposits on the surface and in the subsurface of Mars. To better understand its behavior at temperature conditions prevailing on the Martian surface and aid its identification in ongoing and future Rover missions, we have carried out a combined experimental and computational study of the mineral’s structure and properties. We collected neutron powder difraction data at temperatures ranging from 21–290 K, room-temperature synchrotron X-ray data and Raman spectra. Moreover, first-principles calculations of the vibrational properties of rozenite were carried out to aid the interpretation of the Raman spectra. We found, in contrast to a recent Raman spectroscopic study, that there are no phase transitions between 21 and 290 K. We confirm the heavy atom structure reported in the literature (space group P21/n) to be correct and present, for the first time, an unconstrained determination of the H atom positions by means of high-resolution neutron powder diffraction, and report the complete crystal structure at 290 and 21 K. The anisotropy of the thermal expansion of the lattice vectors is αa:αb:αc = 1.00:2.19:1.60 at 285 K. Subsequent analysis of the thermal expansion tensor revealed highly anisotropic behavior as reflected in negative thermal expansion approximately ||〈101⟩ and ratios of the tensor eigenvalues of α1:α2:α3 = −1:3.74:5.40 at 285 K. Lastly, we demonstrated how combining Raman spectroscopy and X-ray difraction of the same sample sealed inside a capillary with complementary first-principles calculations yields accurate reference Raman spectra. This workflow enables the construction of a reliable Raman spectroscopic database for planetary exploration, which will be invaluable to shed light on the geological past as well as in identifying resources for the future colonization of planetary bodies throughout the solar system.
|
Jun 2023
|
|