B16-Test Beamline
|
Matthew
Donoghue
,
Hongchang
Wang
,
Daniel
O'Toole
,
Charles E.
Connelly
,
Shahd
Horie
,
Peter
Woulfe
,
Cornelio
Salinas
,
Brid
King
,
Brendan
Tuohy
,
Evan
Kiely
,
Kazimir
Wanelik
,
Kawal
Sawhney
,
Christoph
Kleefeld
Diamond Proposal Number(s):
[24649]
Open Access
Abstract: The study of biological soft tissue structures at the micron scale details the function of healthy and pathological tissues, which is vital in the diagnosis and treatment of diseases. Speckle based X-ray phase contrast tomographic scans at a nanometer scale have the potential to thoroughly analyse such tissues in a quantitative and qualitative manner. Diamond light source, the UKs national synchrotron facility developed and refined a 1-D X-ray speckle-based imaging technique, referred to as Fly scan mode. This novel image acquisition technique was used to perform a rapid structural composition scan of rodent lung histology samples. The rodent samples were taken from healthy and Staphylococcus aureus induced acute respiratory distress syndrome models. The analysis and cross comparison of the fly scan method, absorption-based tomography and conventional histopathology H&E staining microscopy are discussed in this paper. This analysis and cross comparison outline the ways the speckle-based technique can be of benefit. These advantages include improved soft tissue contrast, 3-D volumetric rendering, segmentation of specific gross tissue structures, quantitative analysis of gross tissue volume. A further advantage is the analysis of cellular distribution throughout the volumetric rendering of the tissue sample. The study also details the current limitations of this technique and points to ways in which future work on this imaging modality may progress.
|
Oct 2024
|
|
I19-Small Molecule Single Crystal Diffraction
|
Zhonghang
Chen
,
Peiyu
Fang
,
Jiangnan
Li
,
Xue
Han
,
Wenhao
Huang
,
Wenyue
Cui
,
Zhiwei
Liu
,
Mark R.
Warren
,
David
Allan
,
Peng
Cheng
,
Sihai
Yang
,
Wei
Shi
Diamond Proposal Number(s):
[36394]
Open Access
Abstract: Due to almost identical boiling points of benzene and cyclohexane, the extraction of trace benzene from cyclohexane is currently performed via the energy-intensive extractive distillation method. Their adsorptive separation by porous materials is hampered by their similar dimensions. Metal-organic frameworks (MOFs) with versatile pore environments are capable of molecular discrimination, but the separation of trace substrates in liquid-phase remains extremely challenging. Herein, we report a robust MOF (NKU-300) with triangular channels decorated with crown ether that can discriminate trace benzene from cyclohexane, exhibiting an unprecedented selectivity of 8615(10) for the mixture of benzene/cyclohexane (v/v = 1/1000). Remarkably, NKU-300 demonstrates exceptional selectivities for the extraction of benzene from cyclohexane over a wide range of concentrations of 0.1%–50% with ultrafast sorption kinetics and excellent stability. Single-crystal X-ray diffraction and computational modelling reveal that multiple supramolecular interactions cooperatively immobilise benzene molecules in the triangular channel, enabling the superior separation performance. This study will promote the application of advanced sorbents with tailored binding sites for challenging industrial separations.
|
Oct 2024
|
|
|
Abstract: In this study, we investigate the properties, with a special focus on the magnetic attributes, of NiFe2O4 (NFO)/BaTiO3 (BTO) multiferroic heterostructures, examining individual layer thicknesses ranging from 3 to 12 nm. X-ray diffraction reveals that as BTO thickness increases, NFO transitions from a nonstrained cubic lattice to a compressively strained tetragonal lattice. In contrast, thicker NFO layers introduce enhanced tensile stresses on the BTO layer, counteracting the compressive strain originating from the SrTiO3 (STO) substrate. Piezoresponse force microscopy demonstrates that the polarization switching voltage escalates with increasing BTO layer thickness. Through X-ray magnetic circular dichroism measurements coupled with multiplet theory, we elucidate variations in the magnetic moments and ionic distributions within the NFO layers. Remarkably, a larger BTO thickness is associated with a chemical reduction of Fe ions in the NFO layer, indicative of increased oxygen vacancies, which are induced by the increasing compressive strain as evidenced by first-principles calculations. Thinner NFO layers showed increased tetrahedral (Td) site vacancies and oxygen vacancies concomitant with reduced magnetic moments, which can be optimized by either increasing NFO thickness or through air annealing at 450 °C. Combining the ionic distribution variation with in-plane lattice parameter evolution during growth, we postulated that the reduced magnetic moments originate from a 2–3 nm antiferromagnetic rock salt NiO/FeO formed at the beginning of NFO growth, while the air annealing restores the magnetism by oxidizing and arranging the NiO/FeO into spinel NFO under the synergistic effect of oxygen and heat. Air annealing at moderate temperature appears as a very efficient method to restore the magnetization of ultrathin layers of NFO, allowing us to overcome a major drawback for these compounds, which hampers their utilization in spintronics applications so far.
|
Oct 2024
|
|
I13-2-Diamond Manchester Imaging
|
Manfredo
Capriolo
,
Sara
Callegaro
,
Frances. M.
Deegan
,
Renaud
Merle
,
Heejin
Jeon
,
Martin. J.
Whitehouse
,
László. E
Aradi
,
Malte
Storm
,
Paul R.
Renne
,
Don R.
Baker
,
Jacopo
Dal Corso
,
Robert J.
Newton
,
Csaba
Szabo
,
Bruna B.
Carvalho
,
Nasrrddine
Youbi
,
Andrea
Marzoli
Diamond Proposal Number(s):
[24552]
Open Access
Abstract: The nature of the magma plumbing system of Large Igneous Provinces is still poorly understood. Among these exceptional magmatic events from Earth’s past, the end-Triassic Central Atlantic Magmatic Province (CAMP) and the end-Cretaceous Deccan Traps (Deccan) coincided in time with two of the most catastrophic biotic crises during the Phanerozoic. In order to constrain the architecture of their magma plumbing system, glomerocrysts containing abundant bubble-bearing melt inclusions from basaltic lava flows of both CAMP and Deccan were investigated via in situ geochemical and microstructural analyses. The analysed glomerocrysts, dominated by augitic clinopyroxene crystals, represent fragments of a crystal mush entrained by basaltic magmas before eruption. The analysed melt inclusions, consisting of an intermediate to felsic composition glass and CO2-bearing bubbles, represent relics of interstitial melts and fluids within a porous crystal framework forming the crystal mush. The different volume proportions between bubbles and whole inclusions reveal that melt entrapment occurred after volatile exsolution. The minimum observed bubble/inclusion fraction indicates that the CO2 concentration in CAMP and Deccan melts was at least 0.3 wt.%, consistent with a maximum entrapment pressure of about 0.5 GPa at CO2–H2O fluid-saturated conditions. The MgO-rich composition of host clinopyroxene crystals and whole rocks is in contrast with the SiO2-rich composition of (trachy-) andesitic to rhyolitic glass of melt inclusions, pointing to disequilibrium conditions. Thermodynamic and geochemical modelling shows that fractional crystallization alone cannot explain the evolved composition of glass in melt inclusions starting from their whole rock composition. On one side, the oxygen isotope composition of clinopyroxene crystals in glomerocrysts ranges from + 3.9 (± 0.3) to + 5.8 (± 0.3) ‰ and their sample-averaged oxygen isotope composition spans from + 4.4 (N = 10) to + 5.6 (N = 10) ‰, implying that glomerocrysts crystallized from mafic melts with normal (i.e., mantle-like) to slightly low δ18O values. On the other side, the oxygen isotope composition of glass in melt inclusions ranges from + 5.5 (± 0.4) to + 22.1 (± 0.4) ‰, implying that melt inclusions entrapped intermediate to felsic melts with normal (i.e., mantle-like) to extremely high δ18O values, typical of (meta-) sedimentary rocks. Some melt inclusions are compatible with fractionation from the same mafic melts that crystallized their host mineral phase, but most melt inclusions are compatible with variable degrees of crustal assimilation and partial mixing, potentially followed by minor post-entrapment isotope re-equilibration. In the CAMP, where sedimentary basins are abundant, (meta-) pelites and occasionally granitoids were the most likely assimilants. On the contrary, in the Deccan, where sedimentary basins are rare, granitoids and metapelites were the most likely assimilants. Oxygen isotope compositions of glass in melt inclusions, spanning from mantle-like to crust-dominated signatures, suggest that the CO2 within their coexisting bubbles likely derived partly from the mantle and partly from assimilated crustal materials. The investigated glomerocrysts and their bubble-bearing melt inclusions are relics of a multiphase (i.e., solid + liquid + gas phases) crystal mush revealing a dynamic evolution for the magma plumbing system of both CAMP and Deccan, where crystals, silicate melts and exsolved fluids coexisted and interacted through most of the transcrustal section.
|
Oct 2024
|
|
|
Roi
Asor
,
Anna
Olerinyova
,
Sean A.
Burnap
,
Manish S.
Kushwah
,
Fabian
Soltermann
,
Lucas S. P.
Rudden
,
Mario
Hensen
,
Mario
Hensen
,
Snežana
Vasiljevic
,
Juliane
Brun
,
Michelle
Hill
,
Liu
Chang
,
Wanwisa
Dejnirattisai
,
Piyada
Supasa
,
Juthathip
Mongkolsapaya
,
Daming
Zhou
,
David I.
Stuart
,
Gavin R.
Screaton
,
Matteo T.
Degiacomi
,
Nicole
Zitzmann
,
Justin L. P.
Benesch
,
Weston B.
Struwe
,
Philipp
Kukura
Open Access
Abstract: Cellular processes are controlled by the thermodynamics of the underlying biomolecular interactions. Frequently, structural investigations use one monomeric binding partner, while ensemble measurements of binding affinities generally yield one affinity representative of a 1:1 interaction, despite the majority of the proteome consisting of oligomeric proteins. For example, viral entry and inhibition in SARS-CoV-2 involve a trimeric spike surface protein, a dimeric angiotensin-converting enzyme 2 (ACE2) cell-surface receptor and dimeric antibodies. Here, we reveal that cooperativity correlates with infectivity and inhibition as opposed to 1:1 binding strength. We show that ACE2 oligomerizes spike more strongly for more infectious variants, while exhibiting weaker 1:1 affinity. Furthermore, we find that antibodies use induced oligomerization both as a primary inhibition mechanism and to enhance the effects of receptor-site blocking. Our results suggest that naive affinity measurements are poor predictors of potency, and introduce an antibody-based inhibition mechanism for oligomeric targets. More generally, they point toward a much broader role of induced oligomerization in controlling biomolecular interactions.
|
Oct 2024
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[25254]
Open Access
Abstract: The engineering of biochars with desired morphologies and pore structures is a far-reaching objective towards sustainable pore-dependent environmental technologies, such as water and soil remediation or catalysis. We hereby report a series of experiments that allow the direct following of the shape and porosity of single biochar particles during pyrolysis. Particles ~ 1–2 mm in diameter of unwashed and water-washed raw walnut shells were continuously 3D imaged during pyrolysis to 575 ℃ at a 10 K min−1 in Ar to obtain time- and temperature-resolved x-ray micro computed tomographies to a 0.82 μm resolution. Results showed visual evidence of a 30% and 70% v/v particle shrinkage for unwashed and washed samples, respectively. Particle swelling between 200 and 300 ℃ in the unwashed sample provided evidence of the softening of native biopolymers associated with lignin in untreated biomass. A purpose-defined parameter Λ shows the temperature-dependence of pore re-distribution towards the center of the particle to be linear for both samples. Λ was found to be in the washed sample, approximately 3.5 times faster than in the unwashed one. Such linear dependence is significantly slower than an exponential Arrhenius-like trend thereby providing a qualitative measure of the heat and mass transport phenomena limiting the chemical reactions in the porous medium. This evidence is key to resolving the pathways to the thermochemical decomposition of biomass leading to preparation of precision-engineered biochars.
|
Oct 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
David
Brooks
,
Meng
He
,
Yinlin
Chen
,
Wenyuan
Huang
,
Boya
Tang
,
Bing
An
,
Xue
Han
,
Meredydd
Kippax-Jones
,
Mark D.
Frogley
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Svemir
Rudic
,
Yongqiang
Chen
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Catherine
Dejoie
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[33115, 30398]
Open Access
Abstract: The functionalization of metal–organic frameworks (MOFs) to enhance the adsorption of benzene at trace levels remains a significant challenge. Here, we report the exceptional adsorption of trace benzene in a series of zirconium-based MOFs functionalized with chloro groups. Notably, MFM-68-Cl2, constructed from an anthracene linker incorporating chloro groups, exhibits a remarkable benzene uptake of 4.62 mmol g–1 at 298 K and 0.12 mbar, superior to benchmark materials. In situ synchrotron X-ray diffraction, Fourier transform infrared microspectroscopy, and inelastic neutron scattering, coupled with density functional theory modeling, reveal the mechanism of binding of benzene in these materials. Overall, the excellent adsorption performance is promoted by an unprecedented cooperation between chloro-groups, the optimized pore size, aromatic functionality, and the flexibility of the linkers in response to benzene uptake in MFM-68-Cl2. This study represents the first example of enhanced adsorption of trace benzene promoted by −CH···Cl and Cl···π interactions in porous materials.
|
Oct 2024
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[25064, 26668]
Open Access
Abstract: The crystalline sponge method has proven invaluable in the preparation and analysis of supramolecular host/guest complexes if the host can be obtained in a suitable crystalline form, allowing the analysis of guest binding modes inside host cavities which can inform other studies into processes such as catalysis. Here, we report the structures of a set of ten host/guest complexes using an octanuclear coordination cage host with a range of small-molecule neutral organic guests including four aromatic aldehydes and ketones, three cyclic lactams, and three epoxides. In all cases, the cavity-bound guests are anchored by a collection of CH•••O hydrogen-bonding interactions between an O atom on the guest and a convergent set of CH protons at a pocket on the cage interior surface. Depending on guest size and the presence of solvent molecules as additional guests, there may be one or two cavity-bound guests, with small aromatic guests forming π-stacked pairs. Some guests (the lactams) participate in additional NH•••F H-bonding interactions with surface-bound fluoroborate anions, which indicate the type of anion/guest interactions thought to be responsible for solution-phase catalytic reactions of bound guests.
|
Oct 2024
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[33024]
Open Access
Abstract: Intrinsic self-healing chemistries based on dynamic bonds have been shown to solve many issues in advanced applications, not the least batteries. Herein, we investigate the interactions within a polymer system containing dynamic covalent bonds as cross-linkers and their role when they are used as binders in silicon electrodes. We introduce 1,4-benzenediboronic acid (BDBA) as a cross-linking agent forming boronic ester groups and sodium tetraborate (borax) forming borate ester bonds with poly(vinyl alcohol) (PVA). Silicon electrodes with the cross-linked binders show improved electrochemical performance with a capacity of 1500 mA h g–1 after 200 cycles compared to PVA alone featuring 1000 mA h g–1. In contrast, another hydroxyl-containing polymer, carboxymethyl cellulose, able to form the same cross-linking functionalities, showed poorer performance with the addition of BDBA. The choice of polymer and cross-linker not only impacted the cell performance but also the electrode fabrication and morphology. The presence of cross-linkers decreased the electrode cracking of the pristine and cycled electrodes while having little effect on the solid electrolyte interphase composition. Hence, the properties of the polymeric binder system as a whole and the electrode manufacturing process have a significant impact on the cell performance. Solid-state NMR is shown to be a powerful technique to investigate the interaction between the different components and to confirm the formation of boronic ester bonds via the hydroxyl groups of PVA. Furthermore, the presence of silicon particles changes the chemical environment of the boron in BDBA favoring the formation of borate species, which are not present with PVA only, indicating interactions between BDBA and the silicon particles. Hence, PVA in combination with the boron-based cross-linkers, BDBA and borax, provide higher capacity and cycling stability than PVA alone, showing a promising approach to overcome the challenges of silicon anodes using binders with dynamic covalent bonds.
|
Oct 2024
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[36213]
Open Access
Abstract: Five different electrolyte salts, namely NaBF4, NaClO4, NaDFOB, NaFSI and NaPF6, were evaluated in non-flammable triethyl phosphate (TEP) based electrolyte solutions in sodium-ion full-cells using high-mass loading Prussian white and hard carbon electrodes. Their impact on the viscosity, ionic conductivity and solvation structure was analyzed, revealing that NaFSI-based electrolytes exhibited a stronger interaction with TEP and less ion-pairing than the other salts, resulting in the highest ionic conductivity at a concentration of 0.8 m (mol/kg). Galvanostatic cycling experiments showed that none of the electrolyte salts dissolved in TEP forms an efficient passivation layer. However, adding 1 wt.% vinylene carbonate (VC) significantly improved cycling performance for the cells with NaBF4, NaDFOB or NaFSI, but not with NaClO4 or NaPF6. Additionally, NaFSI in TEP with 1 wt.% VC electrolyte solution showed minimal gas evolution during the formation cycling (< 8 mbar). In a 1 Ah multilayer pouch cell, 0.8 m NaFSI in TEP with 1 wt.% VC showed promising results with 88% capacity retention after 200 cycles. X-ray photoelectron spectroscopy analysis revealed that the addition of VC results in the formation of a thin SEI and minimized TEP decomposition on hard carbon, especially for 0.8 m NaFSI TEP with 1 wt.% VC.
|
Oct 2024
|
|