I03-Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
|
Daming
Zhou
,
Helen M. E.
Duyvesteyn
,
Cheng-Pin
Chen
,
Chung-Guei
Huang
,
Ting-Hua
Chen
,
Shin-Ru
Shih
,
Yi-Chun
Lin
,
Chien-Yu
Cheng
,
Shu-Hsing
Cheng
,
Yhu-Chering
Huang
,
Tzou-Yien
Lin
,
Che
Ma
,
Jiandong
Huo
,
Loic
Carrique
,
Tomas
Malinauskas
,
Reinis R.
Ruza
,
Pranav
Shah
,
Tiong Kit
Tan
,
Pramila
Rijal
,
Robert F.
Donat
,
Kerry
Godwin
,
Karen R.
Buttigieg
,
Julia A.
Tree
,
Julika
Radecke
,
Neil
Paterson
,
Piyada
Supasa
,
Juthathip
Mongkolsapaya
,
Gavin R.
Screaton
,
Miles W.
Carroll
,
Javier
Gilbert-Jaramillo
,
Michael L.
Knight
,
William
James
,
Raymond J.
Owens
,
James H.
Naismith
,
Alain R.
Townsend
,
Elizabeth E.
Fry
,
Yuguang
Zhao
,
Jingshan
Ren
,
David I.
Stuart
,
Kuan-Ying A.
Huang
Diamond Proposal Number(s):
[19946, 26983]
Abstract: The COVID-19 pandemic has had an unprecedented health and economic impact and there are currently no approved therapies. We have isolated an antibody, EY6A, from an individual convalescing from COVID-19 and have shown that it neutralizes SARS-CoV-2 and cross-reacts with SARS-CoV-1. EY6A Fab binds the receptor binding domain (RBD) of the viral spike glycoprotein tightly (KD of 2 nM), and a 2.6-Å-resolution crystal structure of an RBD–EY6A Fab complex identifies the highly conserved epitope, away from the ACE2 receptor binding site. Residues within this footprint are key to stabilizing the pre-fusion spike. Cryo-EM analyses of the pre-fusion spike incubated with EY6A Fab reveal a complex of the intact spike trimer with three Fabs bound and two further multimeric forms comprising the destabilized spike attached to Fab. EY6A binds what is probably a major neutralizing epitope, making it a candidate therapeutic for COVID-19.
|
Jul 2020
|
|
I03-Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
|
Jiandong
Huo
,
Yuguang
Zhao
,
Jingshan
Ren
,
Daming
Zhou
,
Helen M. E.
Duyvesteyn
,
Helen M.
Ginn
,
Loic
Carrique
,
Tomas
Malinauskas
,
Reinis R.
Ruza
,
Pranav N. M.
Shah
,
Tiong Kit
Tan
,
Pramila
Rijal
,
Naomi
Coombes
,
Kevin R.
Bewley
,
Julia A.
Tree
,
Julika
Radecke
,
Neil
Paterson
,
Piyasa
Supasa
,
Juthathip
Mongkolsapaya
,
Gavin R.
Screaton
,
Miles
Carroll
,
Alain
Townsend
,
Elizabeth E.
Fry
,
Raymond J.
Owens
,
David I.
Stuart
Diamond Proposal Number(s):
[19946, 26983]
Open Access
Abstract: There are as yet no licenced therapeutics for the COVID-19 pandemic. The causal coronavirus (SARS-CoV-2) binds host cells via a trimeric Spike whose receptor binding domain (RBD) recognises angiotensin-converting enzyme 2 (ACE2), initiating conformational changes that drive membrane fusion. We find that the monoclonal antibody CR3022 binds the RBD tightly, neutralising SARS-CoV-2 and report the crystal structure at 2.4 Å of the Fab/RBD complex. Some crystals are suitable for screening for entry-blocking inhibitors. The highly conserved, structure-stabilising, CR3022 epitope is inaccessible in the prefusion Spike, suggesting that CR3022 binding facilitates conversion to the fusion-incompetent post-fusion state. Cryo-EM analysis confirms that incubation of Spike with CR3022 Fab leads to destruction of the prefusion trimer. Presentation of this cryptic epitope in an RBD-based vaccine might advantageously focus immune responses. Binders at this epitope may be useful therapeutically, possibly in synergy with an antibody blocking receptor attachment.
|
Jun 2020
|
|
|
Yuguang
Zhao
,
Daming
Zhou
,
Tao
Ni
,
Dimple
Karia
,
Abhay
Kotecha
,
Xiangxi
Wang
,
Zihe
Rao
,
E. Yvonne
Jones
,
Elizabeth E.
Fry
,
Jingshan
Ren
,
David I.
Stuart
Open Access
Abstract: Coxsackievirus A10 (CV-A10) is responsible for an escalating number of severe infections in children, but no prophylactics or therapeutics are currently available. KREMEN1 (KRM1) is the entry receptor for the largest receptor-group of hand-foot-and-mouth disease causing viruses, which includes CV-A10. We report here structures of CV-A10 mature virus alone and in complex with KRM1 as well as of the CV-A10 A-particle. The receptor spans the viral canyon with a large footprint on the virus surface. The footprint has some overlap with that seen for the neonatal Fc receptor complexed with enterovirus E6 but is larger and distinct from that of another enterovirus receptor SCARB2. Reduced occupancy of a particle-stabilising pocket factor in the complexed virus and the presence of both unbound and expanded virus particles suggests receptor binding initiates a cascade of conformational changes that produces expanded particles primed for viral uncoating.
|
Jan 2020
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19946]
Open Access
Abstract: Enteroviruses cause a range of human and animal diseases, some life-threatening, but there remain no licenced anti-enterovirus drugs. However, a benzene-sulfonamide derivative and related compounds have been shown recently to block infection of a range of enteroviruses by binding the capsid at a positively-charged surface depression conserved across many enteroviruses. It has also been established that glutathione is essential for the assembly of many enteroviruses, interacting with the capsid proteins to facilitate the formation of the pentameric assembly intermediate, although the mechanism is unknown. Here we show, by high resolution structure analyses of enterovirus F3, that reduced glutathione binds to the same interprotomer pocket as the benzene-sulfonamide derivative. Bound glutathione makes strong interactions with adjacent protomers, thereby explaining the underlying biological role of this druggable binding pocket and delineating the pharmacophore for potential antivirals.
|
Jan 2020
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I24-Microfocus Macromolecular Crystallography
|
Jingshan
Ren
,
Joanne E.
Nettleship
,
Gemma
Harris
,
William
Mwangi
,
Nahid
Rhaman
,
Clare
Grant
,
Abhay
Kotecha
,
Elizabeth
Fry
,
Bryan
Charleston
,
David I.
Stuart
,
John
Hammond
,
Raymond J.
Owens
Diamond Proposal Number(s):
[10627, 14744]
Open Access
Abstract: Cattle antibodies have unusually long CDR3 loops in their heavy chains (HCs), and limited light chain (LC) diversity, raising the question of whether these mask the effect of LC variation on antigen recognition. We have investigated the role of the LC in the structure and activity of two neutralizing cattle antibodies (B4 and B13) that bind the F protein of bovine respiratory syncytial virus (bRSV). Recombinant Fab fragments of B4 and B13 bound bRSV infected cells and showed similar affinities for purified bRSV F protein. Exchanging the LCs between the Fab fragments produced hybrid Fabs: B13* (B13 HC/B4 LC) and B4* (B4 HC/B13 LC). The affinity of B13* to the F protein was found to be two-fold lower than B13 whilst the binding affinity of B4* was reduced at least a hundred-fold compared to B4 such that it no longer bound to bRSV infected cells. Comparison of the structures of B4 and B13 with their LC exchanged counterparts B4* and B13* showed that paratope of the HC variable domain (VH) of B4 was disrupted on pairing with the B13 LC, consistent with the loss of binding activity. By contrast, B13 H3 adopts a similar conformation when paired with either B13 or B4 LCs. These observations confirm the expected key role of the extended H3 loop in antigen-binding by cattle antibodies but also show that the quaternary LC/HC subunit interaction can be crucial for its presentation and thus the LC variable domain (VL) is also important for antigen recognition.
|
Aug 2019
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I24-Microfocus Macromolecular Crystallography
|
Faraz
Shaikh
,
Yuguang
Zhao
,
Luis
Alvarez
,
Maria
Iliopoulou
,
Christopher Thomas
Lohans
,
Christopher J.
Schofield
,
Sergi
Padilla-Parra
,
Shirley W. I.
Siu
,
Elizabeth
Fry
,
Jingshan
Ren
,
David I.
Stuart
Diamond Proposal Number(s):
[10627]
Open Access
Abstract: Potent Ebolavirus (EBOV) inhibitors will help to curtail outbreaks such as that which occurred in 2014-16 in West Africa. EBOV has on its surface a single glycoprotein (GP) critical for viral entry and membrane fusion. Recent high resolution complexes of EBOV GP with a variety of approved drugs revealed that binding to a common cavity prevented fusion of the virus and endosomal membranes, inhibiting virus infection. We performed docking experiments, screening a database of natural compounds to identify those likely to bind at this site. Using both inhibition assays of HIV-1-derived pseudovirus cell entry and structural analyses of the complexes of the compounds with GP we show here that two of these compounds attach in the common binding cavity, out of eight tested. In both cases two molecules bind in the cavity. The two compounds are chemically similar but the tighter binder has an additional chlorine atom that forms good halogen bonds to the protein and achieves an IC50 of 50 nM, making it the most potent GP-binding EBOV inhibitor yet identified, validating our screening approach for the discovery of novel anti-viral compounds.
|
Feb 2019
|
|
|
Abstract: Enterovirus 71 (EV71) is a common cause of hand, foot and mouth disease—a disease endemic especially in the Asia-Pacific region1. Scavenger receptor class B member 2 (SCARB2) is the major receptor of EV71, as well as several other enteroviruses responsible for hand, foot and mouth disease, and plays a key role in cell entry2. The isolated structures of EV71 and SCARB2 are known3,4,5,6, but how they interact to initiate infection is not. Here, we report the EV71–SCARB2 complex structure determined at 3.4 Å resolution using cryo-electron microscopy. This reveals that SCARB2 binds EV71 on the southern rim of the canyon, rather than across the canyon, as predicted3,7,8. Helices 152–163 (α5) and 183–193 (α7) of SCARB2 and the viral protein 1 (VP1) GH and VP2 EF loops of EV71 dominate the interaction, suggesting an allosteric mechanism by which receptor binding might facilitate the low-pH uncoating of the virus in the endosome/lysosome. Remarkably, many residues within the binding footprint are not conserved across SCARB2-dependent enteroviruses; however, a conserved proline and glycine seem to be key residues. Thus, although the virus maintains antigenic variability even within the receptor-binding footprint, the identification of binding ‘hot spots’ may facilitate the design of receptor mimic therapeutics less likely to quickly generate resistance.
|
Dec 2018
|
|
Krios I-Titan Krios I at Diamond
|
Abhay
Kotecha
,
Eva
Perez-Martin
,
Yongjie
Harvey
,
Fuquan
Zhang
,
Serban L.
Ilca
,
Elizabeth E.
Fry
,
Ben
Jackson
,
Francois
Maree
,
Katherine
Scott
,
Corey W.
Hecksel
,
Michiel M.
Harmsen
,
Valérie
Mioulet
,
Britta
Wood
,
Nick
Juleff
,
David I.
Stuart
,
Bryan
Charleston
,
Julian
Seago
Open Access
Abstract: Foot-and-mouth disease virus (FMDV) is highly contagious and infects cloven-hoofed domestic livestock leading to foot-and-mouth disease (FMD). FMD outbreaks have severe economic impact due to production losses and associated control measures. FMDV is found as seven distinct serotypes, but there are numerous subtypes within each serotype, and effective vaccines must match the subtypes circulating in the field. In addition, the O and Southern African Territories (SAT) serotypes, are relatively more thermolabile and their viral capsids readily dissociate into non-immunogenic pentameric subunits, which can compromise the effectiveness of FMD vaccines. Here we report the construction of a chimeric clone between the SAT2 and O serotypes, designed to have SAT2 antigenicity. Characterisation of the chimeric virus showed growth kinetics equal to that of the wild type SAT2 virus with better thermostability, attributable to changes in the VP4 structural protein. Sequence and structural analyses confirmed that no changes from SAT2 were present elsewhere in the capsid as a consequence of the VP4 changes. Following exposure to an elevated temperature the thermostable SAT2-O1K chimera induced higher neutralizing-antibody titres in comparison to wild type SAT2 virus.
|
Sep 2018
|
|
|
Gareth
Shimmon
,
Abhay
Kotecha
,
Jingshan
Ren
,
Amin S.
Asfor
,
Joseph
Newman
,
Stephen
Berryman
,
Eleanor M.
Cottam
,
Sarah
Gold
,
Toby J.
Tuthill
,
Donald P.
King
,
Emiliana
Brocchi
,
Andrew M. Q.
King
,
Ray
Owens
,
Elizabeth E.
Fry
,
David I.
Stuart
,
Alison
Burman
,
Terry
Jackson
Open Access
Abstract: Foot-and-mouth disease (FMD) affects economically important livestock and is one of the most contagious viral diseases. The most commonly used FMD diagnostic assay is a sandwich ELISA. However, the main disadvantage of this ELISA is that it requires anti-FMD virus (FMDV) serotype-specific antibodies raised in small animals. This problem can be, in part, overcome by using anti-FMDV monoclonal antibodies (MAbs) as detecting reagents. However, the long-term use of MAbs may be problematic and they may need to be replaced. Here we have constructed chimeric antibodies (mouse/rabbit D9) and Fabs (fragment antigen-binding) (mouse/cattle D9) using the Fv (fragment variable) regions of a mouse MAb, D9 (MAb D9), which recognises type O FMDV. The mouse/rabbit D9 chimeric antibody retained the FMDV serotype-specificity of MAb D9 and performed well in a FMDV detection ELISA as well as in routine laboratory assays. Cryo-electron microscopy analysis confirmed engagement with antigenic site 1 and peptide competition studies identified the aspartic acid at residue VP1 147 as a novel component of the D9 epitope. This chimeric expression approach is a simple but effective way to preserve valuable FMDV antibodies, and has the potential for unlimited generation of antibodies and antibody fragments in recombinant systems with the concomitant positive impacts on the 3Rs (Replacement, Reduction and Refinement) principles.
|
Aug 2018
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[6387, 8423]
Abstract: Hepatitis A virus (HAV) has been enigmatic, evading detailed structural analysis for many years. Its recently determined high-resolution structure revealed an angular surface without the indentations often characteristic of receptor-binding sites. The viral protein 1 (VP1) β-barrel shows no sign of a pocket factor and the amino terminus of VP2 displays a “domain swap” across the pentamer interface, as in a subset of mammalian picornaviruses and insect picorna-like viruses. Structure-based phylogeny confirms this placement. These differences suggest an uncoating mechanism distinct from that of enteroviruses. An empty capsid structure reveals internal differences in VP0 and the VP1 amino terminus connected with particle maturation. An HAV/Fab complex structure, in which the antigen-binding fragment (Fab) appears to act as a receptor–mimic, clarifies some historical epitope mapping data, but some remain difficult to reconcile. We still have little idea of the structural features of enveloped HAV particles.
|
Jul 2018
|
|