I03-Macromolecular Crystallography
|
Mauricio P.
Contreras
,
Hsuan
Pai
,
Muniyandi
Selvaraj
,
Amirali
Toghani
,
David M.
Lawson
,
Yasin
Tumtas
,
Cian
Duggan
,
Enoch Lok Him
Yuen
,
Clare E. M.
Stevenson
,
Adeline
Harant
,
Abbas
Maqbool
,
Chih-Hang
Wu
,
Tolga O.
Bozkurt
,
Sophien
Kamoun
,
Lida
Derevnina
Diamond Proposal Number(s):
[18565]
Open Access
Abstract: Parasites counteract host immunity by suppressing helper nucleotide binding and leucine-rich repeat (NLR) proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. An amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a potential strategy for resurrecting disease resistance in crop genomes.
|
May 2023
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[18598]
Open Access
Abstract: Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs). To date, neither the function nor the structure of a multi-domain GH92 α-mannosidase CBM has been characterized. Here, the biochemical investigation and crystal structure of the full-length five-domain GH92 α-1,2-mannosidase from Neobacillus novalis (NnGH92) with mannoimidazole bound in the active site and an additional mannoimidazole bound to the N-terminal CBM32 are reported. The structure of the catalytic domain is very similar to that reported for the GH92 α-mannosidase Bt3990 from Bacteroides thetaiotaomicron, with the substrate-binding site being highly conserved. The function of the CBM32s and other NnGH92 domains was investigated by their sequential deletion and suggested that whilst their binding to the catalytic domain was crucial for the overall structural integrity of the enzyme, they appear to have little impact on the binding affinity to the yeast α-mannan substrate. These new findings provide a better understanding of how to select and optimize other multi-domain bacterial GH92 α-mannosidases for the degradation of yeast α-mannan or mannose-rich glycans.
|
May 2023
|
|
B21-High Throughput SAXS
B23-Circular Dichroism
|
Philip
Bardelang
,
Ewan J.
Murray
,
Isobel
Blower
,
Sara
Zandomeneghi
,
Alice
Goode
,
Rohanah
Hussain
,
Divya
Kumari
,
Giuliano
Siligardi
,
Katsuaki
Inoue
,
Jeni
Luckett
,
James
Doutch
,
Jonas
Emsley
,
Weng C.
Chan
,
Philip
Hill
,
Paul
Williams
,
Boyan B.
Bonev
Diamond Proposal Number(s):
[5098, 12923, 13185, 13634, 15146]
Open Access
Abstract: Virulence gene expression in the human pathogen, S. aureus is regulated by the agr (accessory gene regulator) quorum sensing (QS) system which is conserved in diverse Gram-positive bacteria. The agr QS signal molecule is an autoinducing peptide (AIP) generated via the initial processing of the AgrD pro-peptide by the transmembrane peptidase AgrB. Since structural information for AgrB and AgrBD interactions are lacking, we used homology modelling and molecular dynamics (MD) annealing to characterise the conformations of AgrB and AgrD in model membranes and in solution. These revealed a six helical transmembrane domain (6TMD) topology for AgrB. In solution, AgrD behaves as a disordered peptide, which binds N-terminally to membranes in the absence and in the presence of AgrB. In silico, membrane complexes of AgrD and dimeric AgrB show non-equivalent AgrB monomers responsible for initial binding and for processing, respectively. By exploiting split luciferase assays in Staphylococcus aureus, we provide experimental evidence that AgrB interacts directly with itself and with AgrD. We confirmed the in vitro formation of an AgrBD complex and AIP production after Western blotting using either membranes from Escherichia coli expressing AgrB or with purified AgrB and T7-tagged AgrD. AgrB and AgrD formed stable complexes in detergent micelles revealed using synchrotron radiation CD (SRCD) and Landau analysis consistent with the enhanced thermal stability of AgrB in the presence of AgrD. Conformational alteration of AgrB following provision of AgrD was observed by small angle X-ray scattering from proteodetergent micelles. An atomistic description of AgrB and AgrD has been obtained together with confirmation of the AgrB 6TMD membrane topology and existence of AgrBD molecular complexes in vitro and in vivo.
|
May 2023
|
|
I05-ARPES
|
A. Garrison
Linn
,
Peipei
Hao
,
Kyle N.
Gordon
,
Dushyant
Narayan
,
Bryan S.
Berggren
,
Nathaniel
Speiser
,
Sonka
Reimers
,
Richard P.
Campion
,
Vít
Novák
,
Sarnjeet S.
Dhesi
,
Timur K.
Kim
,
Cephise
Cacho
,
Libor
Šmejkal
,
Tomáš
Jungwirth
,
Jonathan D.
Denlinger
,
Peter
Wadley
,
Daniel S.
Dessau
Diamond Proposal Number(s):
[24224]
Open Access
Abstract: Tetragonal CuMnAs is a room temperature antiferromagnet with an electrically reorientable Néel vector and a Dirac semimetal candidate. Direct measurements of the electronic structure of single-crystalline thin films of tetragonal CuMnAs using angle-resolved photoemission spectroscopy (ARPES) are reported, including Fermi surfaces (FS) and energy-wavevector dispersions. After correcting for a chemical potential shift of ≈− 390 meV (hole doping), there is excellent agreement of FS, orbital character of bands, and Fermi velocities between the experiment and density functional theory calculations. In addition, 2×1 surface reconstructions are found in the low energy electron diffraction (LEED) and ARPES. This work underscores the need to control the chemical potential in tetragonal CuMnAs to enable the exploration and exploitation of the Dirac fermions with tunable masses, which are predicted to be above the chemical potential in the present samples.
|
May 2023
|
|
B18-Core EXAFS
|
Open Access
Abstract: The Fischer–Tropsch (FT) synthesis is traditionally associated with fossil fuel consumption, but recently this technology has emerged as a keystone that enables the conversion of captured CO2 with sustainable hydrogen to energy-dense fuels and chemicals for sectors which are challenging to be electrified. Iron-based FT catalysts are promoted with alkali and transition metals to improve reducibility, activity, and selectivity. Due to their low concentration and the metastable state under reaction conditions, the exact speciation and location of these promoters remain poorly understood. We now show that the selectivity promoters such as potassium and manganese, locked into an oxidic matrix doubling as a catalyst support, surpass conventional promoting effects. La1–xKxAl1–yMnyO3−δ (x = 0 or 0.1; y = 0, 0.2, 0.6, or 1) perovskite supports yield a 60% increase in CO conversion comparable to conventional promotion but show reduced CO2 and overall C1 selectivity. The presented approach to promotion seems to decouple the enhancement of the FT and the water–gas shift reaction. We introduce a general catalyst design principle that can be extended to other key catalytic processes relying on alkali and transition metal promotion.
|
May 2023
|
|
I10-Beamline for Advanced Dichroism
|
Diamond Proposal Number(s):
[23338]
Abstract: In this thesis, the static and dynamic properties of magnetic multilayer samples were studied using a variety of experimental techniques, based both at Exeter and the Diamond Light Source (DLS) and Advanced Light Source (ALS) synchrotron facilities. The exchange interaction, which acts to align spins, is a fundamental part in these magnetic multilayer samples. First, the glancing angle deposition (GLAD) technique was investigated as a tool for creating magnetic multilayers with exciting new exchange interactions. For this, Co thin films were grown by DC magnetron sputtering to tailor the magnetic anisotropy of the samples. These Co samples were structurally characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM). Vibrating sample magnetometry (VSM) was then performed to investigate the magnetic properties of the thin films as a result of the GLAD technique. From this, the necessary conditions for effective anisotropy control using the GLAD technique were identified. Synchrotron x-ray measurements, such as x-ray magnetic circular / linear dichroism (XMCD/XMLD) for static measurements, are vital for investigating magnetic multilayer samples with elemental resolution. To add depth-sensitivity to the synchrotron measurements, the idea of an ultra-thin Mn “spy layer” was investigated by inserting different thicknesses (tMn) of Mn into the NiFe layer in a FePt / NiFe bilayer. The effect on the static magnetic properties was studied using VSM and XMCD hysteresis loops before structural information was obtained using scanning transmission electron microscopy (STEM). The magnetization dynamics were probed using vector network analyzer ferromagnetic resonance (VNA-FMR) and element resolved x-ray ferromagnetic resonance (XFMR) measurements. From this, the ideal “spy layer” thickness of Mn was found to lie in the region 0Å < tMn < 5Å . Spin currents are a dynamic process found in magnetic multilayers and are driven by the exchange interaction. The measurement of a transverse charge current generated via the inverse spin Hall effect (ISHE) has become the principal technique for observing spin currents. During ISHE measurements, parasitic microwave effects were observed and a method to separate out the inverse spin Hall effect was identified. This method was then tested for a reference YIG / Pt bilayer. A more complex NiFe / NiO / Pd / FeCo sample was then studied using this procedure and the ISHE voltage was identified, despite the presence of additional parasitic effects. In addition to the DC spin current component, there is an AC spin current contribution. The AC spin current component was also investigated for the NiFe / NiO / Pd / FeCo sample series using XMCD, XMLD and XFMR measurements. The XMCD and XMLD data revealed the Ni and (Fe)Co spins possess perpendicular in-plane coupling relative to the magnetic moments within the NiO layer. To understand the magnetization dynamics in these samples, an evanescent spin wave model was invoked. This provides crucial insights for interpreting spin current propagation through NiO. Through the combination of work described above, new avenues for the fabrication of magnetic multilayers and the measurement of the magnetization dynamics in such systems are presented to yield a more complete understanding of the crucial role of the exchange interaction in the magnetization dynamics of magnetic multilayers.
|
May 2023
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[19832]
Open Access
Abstract: CrAssphage and related viruses of the order Crassvirales (hereafter referred to as crassviruses) were originally discovered by cross-assembly of metagenomic sequences. They are the most abundant viruses in the human gut, are found in the majority of individual gut viromes, and account for up to 95% of the viral sequences in some individuals. Crassviruses are likely to have major roles in shaping the composition and functionality of the human microbiome, but the structures and roles of most of the virally encoded proteins are unknown, with only generic predictions resulting from bioinformatic analyses4,5. Here we present a cryo-electron microscopy reconstruction of Bacteroides intestinalis virus ΦcrAss0016, providing the structural basis for the functional assignment of most of its virion proteins. The muzzle protein forms an assembly about 1 MDa in size at the end of the tail and exhibits a previously unknown fold that we designate the ‘crass fold’, that is likely to serve as a gatekeeper that controls the ejection of cargos. In addition to packing the approximately 103 kb of virus DNA, the ΦcrAss001 virion has extensive storage space for virally encoded cargo proteins in the capsid and, unusually, within the tail. One of the cargo proteins is present in both the capsid and the tail, suggesting a general mechanism for protein ejection, which involves partial unfolding of proteins during their extrusion through the tail. These findings provide a structural basis for understanding the mechanisms of assembly and infection of these highly abundant crassviruses.
|
May 2023
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[298766]
Open Access
Abstract: Macroscopic scale hollow microcrystals are a promising group of materials for gas and liquid uptake as well as sensing. In this contribution we describe the structure of hollow hexagonal cross-section crystals formulated as salts of a silicon catecholate anion and a tetramethylenediamine (TEMED) cation. Using a combination of X-ray single crystal diffraction, Raman spectroscopy and quantum chemistry we explore the structural properties of the hollow microcrystals. With the X-ray structural data as a starting point and assisted with quantum chemistry we compute Raman tensors to fit polarisation sensitive spectral responses and predict the orientation and packing of unit cells in respect to the long and short axis of the synthesised microcrystals. Using these newly developed methods for predicting molecular Raman responses in space with dependence on local orientation, we present the quantitative analysis of experimental Raman images of both hexagonal and tetragonal cross section hollow microcrystals formed from silicon catecholate anions using different amines as counterions. We describe the distributions of chemical components at the surfaces and edges of microcrystals, address the effect of catcholate hydrophobicity on water uptake and discuss possible strategies in chemical and post-assembly modifications to widen the functional properties of this group of environmentally friendly silicon organic framework (SOF) materials.
|
May 2023
|
|
B16-Test Beamline
|
Diamond Proposal Number(s):
[6092]
Abstract: The shape and strain field of a needle domain in a barium titanate single crystal are modelled using a distribution of dislocations and line charges. The arrangement of these dislocations and charges is a result of the balance of modified Peach-Koehler forces acting among the dislocations and a lattice friction assumed to act at each dislocation site. Based on measurements of needle shape by synchrotron X-ray diffraction, dislocation pile-up theory is used to compute the distribution of discrete dislocations along the needle and hence estimate the lattice friction. It is found that the lattice friction in this model is proportional to the opening angle of a wedge-shape needle domain and consistent with the observed magnitude of stress required to mobilize needle domains. The microstrain distribution around an a-a needle domain tip, obtained from X-ray diffraction measurement, is further used to test the dislocation model, with a similar pattern and magnitude of strains identified in the model and the experiment.
|
May 2023
|
|
Krios IV-Titan Krios IV at Diamond
|
Diamond Proposal Number(s):
[21809]
Open Access
Abstract: Lysine acetylation in histone tails is a key post-translational modification that controls transcription activation. Histone deacetylase complexes remove histone acetylation, thereby repressing transcription and regulating the transcriptional output of each gene. Although these complexes are drug targets and crucial regulators of organismal physiology, their structure and mechanisms of action are largely unclear. Here, we present the structure of a complete human SIN3B histone deacetylase holo-complex with and without a substrate mimic. Remarkably, SIN3B encircles the deacetylase and contacts its allosteric basic patch thereby stimulating catalysis. A SIN3B loop inserts into the catalytic tunnel, rearranges to accommodate the acetyl-lysine moiety, and stabilises the substrate for specific deacetylation, which is guided by a substrate receptor subunit. Our findings provide a model of specificity for a main transcriptional regulator conserved from yeast to human and a resource of protein-protein interactions for future drug designs.
|
May 2023
|
|