I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[31308]
Open Access
Abstract: Magnetic materials are composed of the simple building blocks of magnetic moments on a crystal lattice that interact via magnetic exchange. Yet from this simplicity emerges a remarkable diversity of magnetic states. Some reveal the deep quantum mechanical origins of magnetism, for example, quantum spin liquid (QSL) states in which magnetic moments remain disordered at low temperatures despite being strongly correlated through quantum entanglement. A promising theoretical model of a QSL is the Kitaev model, composed of unusual bond-dependent exchange interactions, but experimentally, this model is challenging to realise. Here we show that the material requirements for the Kitaev QSL survive an extended pseudo-edge-sharing superexchange pathway of Ru3+ octahedra within the honeycomb layers of the inorganic framework solid, RuP3SiO11. We confirm the requisite state of Ru3+ in RuP3SiO11 and resolve the hierarchy of exchange interactions that provide experimental access to an unexplored region of the Kitaev model.
|
Nov 2024
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Xiaoyang
Chen
,
Jaewon
Choi
,
Zhicheng
Jiang
,
Jiong
Mei
,
Kun
Jiang
,
Jie
Li
,
Stefano
Agrestini
,
Mirian
Garcia-Fernandez
,
Hualei
Sun
,
Xing
Huang
,
Dawei
Shen
,
Meng
Wang
,
Jiangping
Hu
,
Yi
Lu
,
Ke-Jin
Zhou
,
Donglai
Feng
Diamond Proposal Number(s):
[35805]
Open Access
Abstract: High-temperature superconductivity was discovered in the pressurized nickelate La3Ni2O7 which has a unique bilayer structure and mixed valence state of nickel. The properties at ambient pressure contain crucial information of the fundamental interactions and bosons mediating superconducting pairing. Here, using X-ray absorption spectroscopy and resonant inelastic X-ray scattering, we identified that Ni 3, Ni 3, and ligand oxygen 2p orbitals dominate the low-energy physics with a small charge-transfer energy. Well-defined optical-like magnetic excitations soften into quasi-static spin-density-wave ordering, evidencing the strong electronic correlation and rich magnetic properties. Based on an effective Heisenberg spin model, we extract a much stronger inter-layer effective magnetic superexchange than the intra-layer ones and propose two viable magnetic structures. Our findings emphasize that the Ni 3 orbital bonding within the bilayer induces novel electronic and magnetic excitations, setting the stage for further exploration of La3Ni2O7 superconductor.
|
Nov 2024
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[14784]
Open Access
Abstract: Silicified peritidal carbonates of the Tonian Draken Formation, Spitsbergen, contain highly diverse and well-preserved microfossil assemblages dominated by filamentous microbial mats, but also including diverse benthic and/or allochthonous (possibly planktonic) microorganisms. Here, we characterize eight morphospecies in focused ion beam (FIB) ultrathin sections using transmission electron microscopy (TEM) and X-ray absorption near-edge structure (XANES) spectromicroscopy. Raman and XANES spectroscopies show the highly aromatic molecular structure of preserved organic matter. Despite this apparently poor molecular preservation, nano-quartz crystallization allowed for the preservation of various ultrastructures distinguished in TEM. In some filamentous microfossils (Siphonophycus) as well as in all cyanobacterial coccoids, extracellular polysaccharide sheaths appear as bands of dispersed organic nanoparticles. Synodophycus microfossils, made up of pluricellular colonies of coccoids, contain organic walls similar to the F-layers of pleurocapsalean cyanobacteria. In some fossils, internal content occurs as particulate organic matter, forming dense networks throughout ghosts of the intracellular space (e.g., in Salome svalbardensis filaments), or scarce granules (in some Chroococcales). In some chroococcalean microfossils (Gloeodiniopsis mikros, and also possibly Polybessurus), we find layered internal contents that are more continuous than nanoparticulate bands defining the sheaths, and with a shape that can be contracted, folded, or invaginated. We interpret these internal layers as the remains of cell envelope substructures and/or photosynthetic membranes thickened by additional cellular material. Some Myxococccoides show a thick (up to ~ 0.9 μm) wall ultrastructure displaying organic pillars that is best reconciled with a eukaryotic affinity. Finally, a large spheroid with ruptured wall, of uncertain affinity, displays a bi-layered envelope. Altogether, our nanoscale investigations provide unprecedented insights into the taphonomy and taxonomy of this well-preserved assemblage, which can help to assess the nature of organic microstructures in older rocks.
|
Nov 2024
|
|
|
Fangfang
Peng
,
Bin
Zhang
,
Runyao
Zhao
,
Shiqiang
Liu
,
Yuxuan
Wu
,
Shaojun
Xu
,
Luke L.
Keenan
,
Huizhen
Liu
,
Qingli
Qian
,
Tianbin
Wu
,
Haijun
Yang
,
Zhimin
Liu
,
Jikun
Li
,
Bingfeng
Chen
,
Xinchen
Kang
,
Buxing
Han
Open Access
Abstract: Selective hydrogenolysis of biomass-derived furanic compounds is a promising approach for synthesizing aliphatic polyols by opening the furan ring. However, there remains a significant need for highly efficient catalysts that selectively target the Csp2–O bond in the furan ring, as well as for a deeper understanding of the fundamental atomistic mechanisms behind these reactions. In this study, we present the use of Pt–Fe bimetallic catalysts supported on layered double hydroxides [PtFex/LDH] for the hydrogenolysis of furanic compounds into aliphatic alcohols, achieving over 90% selectivity toward diols and triols. Our findings reveal that the synergy between Pt nanoparticles, atomically dispersed Pt sites and the support facilitates the formation of hydride-proton pair at the Ptδ+⋯O2− Lewis acid–base unit of PtFex/LDH through hydrogen spillover. The hydride specifically targets the Csp2–O bond in the furan ring, initiating an SN2 reaction and ring cleavage. Moreover, the presence of Fe improves the yield of desired alcohols by inhibiting the adsorption of vinyl groups, thereby suppressing the hydrogenation of the furan ring.
|
Nov 2024
|
|
|
Open Access
Abstract: Growth plate cartilage (GP) serves as a dynamic site of active mineralization and offers a unique opportunity to investigate the cell-regulated matrix mineralization process. Transmission electron microscopy (TEM) provides a means for the direct observation of these mechanisms, offering the necessary resolution and chemical analysis capabilities. However, as mineral crystallinity is prone to artifacts using aqueous fixation protocols, sample preparation techniques are critical to preserve the mineralized tissue in its native form. We optimized cryofixation by high-pressure freezing followed by freeze substitution in anhydrous acetone containing 0.5% uranyl acetate to prepare murine GP for TEM analysis. This sample preparation workflow maintains cellular and extracellular protein structural integrity with sufficient contrast for observation and without compromising mineral crystallinity. By employing appropriate sample preparation techniques, we were able to observe two parallel mineralization processes driven by chondrocytes: 1) intracellular- and 2) extracellular-originating mineralized vesicles. Both mechanisms are based on sequestering calcium phosphate (CaP) within a membrane-limited structure, albeit originating from different compartments of the chondrocytes. In the intracellular originating pathway, CaP accumulates within mitochondria as globular CaP granules, which are incorporated into intracellular vesicles (500-1000 nm) and transported as granules to the extracellular matrix (ECM). In contrast, membrane budding vesicles with a size of approximately 100-200nm, filled with needle-shaped minerals were observed only in the ECM. Both processes transport CaP to the collagenous matrix via vesicles, they can be differentiated based on the vesicle size and mineral morphologies. Their individual importance to the cartilage mineralization process is yet to be determined.
|
Nov 2024
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I11-High Resolution Powder Diffraction
|
Yu
Han
,
Wenyuan
Huang
,
Meng
He
,
Bing
An
,
Yinlin
Chen
,
Xue
Han
,
Lan
An
,
Meredydd
Kippax-Jones
,
Jiangnan
Li
,
Yuhang
Yang
,
Mark D.
Frogley
,
Cheng
Li
,
Danielle
Crawshaw
,
Pascal
Manuel
,
Svemir
Rudic
,
Yongqiang
Chen
,
Ian
Silverwood
,
Luke L.
Daemen
,
Anibal J.
Ramirez-Cuesta
,
Sarah J.
Day
,
Stephen P.
Thompson
,
Ben F.
Spencer
,
Marek
Nikiel
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[37155, 36474]
Open Access
Abstract: Capture of trace benzene is an important and challenging task. Metal–organic framework materials are promising sorbents for a variety of gases, but their limited capacity towards benzene at low concentration remains unresolved. Here we report the adsorption of trace benzene by decorating a structural defect in MIL-125-defect with single-atom metal centres to afford MIL-125-X (X = Mn, Fe, Co, Ni, Cu, Zn; MIL-125, Ti8O8(OH)4(BDC)6 where H2BDC is 1,4-benzenedicarboxylic acid). At 298 K, MIL-125-Zn exhibits a benzene uptake of 7.63 mmol g−1 at 1.2 mbar and 5.33 mmol g−1 at 0.12 mbar, and breakthrough experiments confirm the removal of trace benzene (from 5 to <0.5 ppm) from air (up to 111,000 min g−1 of metal–organic framework), even after exposure to moisture. The binding of benzene to the defect and open Zn(II) sites at low pressure has been visualized by diffraction, scattering and spectroscopy. This work highlights the importance of fine-tuning pore chemistry for designing adsorbents for the removal of air pollutants.
|
Nov 2024
|
|
B21-High Throughput SAXS
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[25108, 32728]
Open Access
Abstract: Decades of research describe myriad redox enzymes that contain cofactors arranged in tightly packed chains facilitating rapid and controlled intra-protein electron transfer. Many such enzymes participate in extracellular electron transfer (EET), a process which allows microorganisms to conserve energy in anoxic environments by exploiting mineral oxides and other extracellular substrates as terminal electron acceptors. In this work, we describe the properties of the triheme cytochrome PgcA from Geobacter sulfurreducens. PgcA has been shown to play an important role in EET but is unusual in containing three CXXCH heme binding motifs that are separated by repeated (PT)x motifs, suggested to enhance binding to mineral surfaces. Using a combination of structural, electrochemical, and biophysical techniques, we experimentally demonstrate that PgcA adopts numerous conformations stretching as far as 180 Å between the ends of domains I and III, without a tightly packed cofactor chain. Furthermore, we demonstrate a distinct role for its domain III as a mineral reductase that is recharged by domains I and II. These findings show PgcA to be the first of a new class of electron transfer proteins, with redox centers separated by some nanometers but tethered together by flexible linkers, facilitating electron transfer through a tethered diffusion mechanism rather than a fixed, closely packed electron transfer chain.
|
Nov 2024
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[25602]
Open Access
Abstract: By developing a 3D X-ray modeling and spatially correlative imaging method for fibrous collagenous tissues, this study provides a comprehensive mapping of nanoscale deformation in the collagen fibril network across the intact bone-cartilage unit (BCU), whose healthy functioning is critical for joint function and preventing degeneration. Extracting the 3D fibril structure from 2D small-angle X-ray scattering before and during physiological compression reveals of dominant deformation modes, including crystallinity transitions, lateral fibril compression, and reorientation, which vary in a coupled, nonlinear, and correlated manner across the cartilage-bone interface. A distinct intermolecular arrangement of collagen molecules, and enhanced molecular-level disorder, is found in the cartilage (sliding) surface region. Just below, fibrils accommodate tissue strain by reorientation, which transitions molecular-level kinking or loss of crystallinity in the deep zone. Crystalline fibrils laterally shrink far more (20×) than they contract, possibly by water loss from between tropocollagen molecules. With the calcified plate acting as an anchor for surrounding tissue, a qualitative switch occurs in fibrillar deformation between the articular cartilage and calcified regions. These findings significantly advance this understanding of the complex, nonlinear ultrastructural dynamics at this critical interface, and opens avenues for developing targeted diagnostic and therapeutic strategies for musculoskeletal disorders.
|
Nov 2024
|
|
I15-Extreme Conditions
|
Diamond Proposal Number(s):
[8699]
Open Access
Abstract: The mechanisms contributing to the electromechanical response of piezoelectric ceramics in shear mode have been investigated using high energy synchrotron x-ray diffraction. Soft lead zirconate titanate ceramic specimens were subjected to an electric field in the range 0.2 to 3.0 MV m-1, perpendicular to that of the initial poling direction, while XRD patterns were recorded in transmission. At low electric field levels, the axial strains remained close to zero but a significant shear strain occurred due to the reversible shear-mode piezoelectric coefficient. Both the axial and shear strains increased substantially at higher field levels due to irreversible ferroelectric domain switching. Eventually, the shear strain decreased again as the average remanent polarization became oriented towards the electric field direction. The lattice strain and domain orientation distributions follow the form of the total strain tensor, enabling the domain switching processes to be monitored by the rotation of the principal strain axis. Reorientation of this axis towards the electric field direction occurred progressively above 0.6 MV m-1, while the angle of rotation increased from 0° to approximately 80° at the maximum field of 3.0 MV m-1. A strong correlation was established between the effective strains associated with different crystallographic directions, which was attributed to the effects of elastic coupling between grains in the polycrystal.
|
Nov 2024
|
|
I04-Macromolecular Crystallography
|
Gavuthami
Murugesan
,
Rachel L.
Paterson
,
Rakesh
Kulkarni
,
Veronica
Ilkow
,
Richard J.
Suckling
,
Mary M.
Connolly
,
Vijaykumar
Karuppiah
,
Robert
Pengelly
,
Archana
Jadhav
,
Jose
Donoso
,
Tiaan
Heunis
,
Wilawan
Bunjobpol
,
Gwilym
Philips
,
Kafayat
Ololade
,
Daniel
Kay
,
Anshuk
Sarkar
,
Claire
Barber
,
Ritu
Raj
,
Carole
Perot
,
Tressan
Grant
,
Agatha
Treveil
,
Andrew
Walker
,
Marcin
Dembek
,
Dawn
Gibbs-Howe
,
Miriam
Hock
,
Ricardo J.
Carreira
,
Kate E.
Atkin
,
Lucy
Dorrell
,
Andrew
Knox
,
Sarah
Leonard
,
Mariolina
Salio
,
Luis F.
Godinho
Diamond Proposal Number(s):
[28224]
Open Access
Abstract: The non-polymorphic HLA-E molecule offers opportunities for new universal immunotherapeutic approaches to chronic infectious diseases. Chronic Hepatitis B virus (HBV) infection is driven in part by T cell dysfunction due to elevated levels of the HBV envelope (Env) protein hepatitis B surface antigen (HBsAg). Here we report the characterization of three genotypic variants of an HLA-E-binding HBsAg peptide, Env371-379, identified through bioinformatic predictions and verified by biochemical and cellular assays. Using a soluble affinity-enhanced T cell receptor (TCR) (a09b08)-anti-CD3 bispecific molecule to probe HLA-E presentation of the Env371-379 peptides, we demonstrate that only the most stable Env371-379 variant, L6I, elicits functional responses to a09b08-anti-CD3-redirected polyclonal T cells co-cultured with targets expressing endogenous HBsAg. Furthermore, HLA-E-Env371-379 L6I-specific CD8+ T cells are detectable in HBV-naïve donors and people with chronic HBV after in vitro priming. In conclusion, we provide evidence for HLA-E-mediated HBV Env peptide presentation, and highlight the effect of viral mutations on the stability and targetability of pHLA-E molecules.
|
Nov 2024
|
|