B23-Circular Dichroism
|
Diamond Proposal Number(s):
[31552]
Open Access
Abstract: A non-chiral ferroelectric nematic compound with a 1,3-dioxane unit in the mesogenic core called 2,3',4',5'-tetrafluoro-[1,1'-biphenyl]-4-yl 2,6-difluoro-4-(5-propyl-1,3-dioxan-2-yl) benzoate (DIO) was studied by dielectric spectroscopy in the frequency range 0.1 Hz to 10 MHz over a wide range of temperatures. The compound exhibits three nematic phases on cooling from the isotropic phase, i.e., the ordinary paraelectric nematic N; the intermediate nematic NX and the ferroelectric NF phases. The least frequency process is due to the dynamics of ions. The middle frequency relaxation process P1 is like as observed in other ferronematic compounds and this mode is a continuation of the molecular flip-flop motion in the isotropic phase to the collective dynamics of dipoles which are strongly coupled with the splay fluctuations in nematic phases. In addition to this process, DIO shows an additional collective relaxation process P2 at higher frequencies both in the N and the NX phases. This mode originates from the polar/chiral molecules of the opposite chirality, these arise from the spontaneous symmetry breaking of achiral mesogens in the N phase. Both collective processes, P1 and P2, show soft mode-like characteristic behavior on cooling from the N to the NX-NF phase transition temperature and are shown to contribute independently to the formation of the ferronematic NF phase.
|
Mar 2023
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[24219, 31681]
Abstract: Wide bandgap oxide semiconductors have gained significant attention in the fields from flat panel displays to solar cells, but their uses have been limited by the lack of high mobility p-type oxide semiconductors. Recently, β-phase TeO2 has been identified as a promising p-type oxide semiconductor with exceptional device performance. In this Letter, we report on the electronic structure of β-TeO2 studied by a combination of high-resolution x-ray spectroscopy and hybrid density functional theory calculations. The bulk bandgap of β-TeO2 is determined to be 3.7 eV. Direct comparisons between experimental and computational results demonstrate that the top of a valence band (VB) of β-TeO2 is composed of the hybridized Te 5s, Te 5p, and O 2p states, whereas a conduction band (CB) is dominated by unoccupied Te 5p states. The hybridization between spatially dispersive Te 5s2 states and O 2p orbitals helps us to alleviate the strong localization in the VB, leading to small hole effective mass and high hole mobility in β-TeO2. The Te 5p states provide stabilizing effect to the hybridized Te 5s-O 2p states, which is enabled by structural distortions of a β-TeO2 lattice. The multiple advantages of large bandgap, high hole mobility, two-dimensional structure, and excellent stability make β-TeO2 a highly competitive material for next-generation opto-electronic devices.
|
Mar 2023
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Lixia
Guo
,
Joseph
Hurd
,
Meng
He
,
Wanpeng
Lu
,
Jiangnan
Li
,
Danielle
Crawshaw
,
Mengtian
Fan
,
Sergey A.
Sapchenko
,
Yinlin
Chen
,
Xiangdi
Zeng
,
Meredydd
Kippax-Jones
,
Wenyuan
Huang
,
Zhaodong
Zhu
,
Pascal
Manuel
,
Mark D.
Frogley
,
Daniel
Lee
,
Martin
Schroeder
,
Sihai
Yang
Open Access
Abstract: The development of stable sorbent materials to deliver reversible adsorption of ammonia (NH3) is a challenging task. Here, we report the efficient capture and storage of NH3 in a series of robust microporous aluminium-based metal-organic framework materials, namely MIL-160, CAU-10-H, Al-fum, and MIL-53(Al). In particular, MIL-160 shows high uptakes of NH3 of 4.8 and 12.8 mmol g−1 at both low and high pressure (0.001 and 1.0 bar, respectively) at 298 K. The combination of in situ neutron powder diffraction, synchrotron infrared micro-spectroscopy and solid-state nuclear magnetic resonance spectroscopy reveals the preferred adsorption domains of NH3 molecules in MIL-160, with H/D site-exchange between the host and guest and an unusual distortion of the local structure of [AlO6] moieties being observed. Dynamic breakthrough experiments confirm the excellent ability of MIL-160 to capture of NH3 with a dynamic uptake of 4.2 mmol g−1 at 1000 ppm. The combination of high porosity, pore aperture size and multiple binding sites promotes the significant binding affinity and capacity for NH3, which makes it a promising candidate for practical applications.
|
Mar 2023
|
|
|
Open Access
Abstract: Spectral computed tomography has received considerable interest in recent years since spectral measurements contain much richer information about the object of interest. In spectral computed tomography, we are interested in the energy channel-wise reconstructions of the object. However, such reconstructions suffer from a low signal-to-noise ratio and share the challenges of conventional low-dose computed tomography such as ring artifacts. Ring artifacts arise from errors in the flat fields and can significantly degrade the quality of the reconstruction. We propose an extended flat-field model that exploits high correlation in the spectral flat fields to reduce ring artifacts in channel-wise reconstructions. The extended model relies on the assumption that the spectral flat fields can be well-approximated by a low-rank matrix. Our proposed model works directly on the spectral flat fields and can be combined with any existing reconstruction model, e.g. filtered back projection and iterative methods. The proposed model is validated on a neutron data set. The results show that our method successfully diminishes ring artifacts and improves the quality of the reconstructions. Moreover, the results indicate that our method is robust; it only needs a single spectral flat-field image, whereas existing methods need multiple spectral flat-field images to reach a similar level of ring reduction.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[18548, 25402]
Open Access
Abstract: The liver isoform of pyruvate kinase (PKL) has gained interest due to its potential capacity to regulate fatty acid synthesis involved in the progression of non-alcoholic fatty liver disease (NAFLD). Here we describe a novel series of PKL modulators that can either activate or inhibit the enzyme allosterically, from a cryptic site at the interface of two protomers in the tetrameric enzyme. Starting from urolithin D, we designed and synthesised 42 new compounds. The effect of these compounds on PKL enzymatic activity was assessed after incubation with cell lysates obtained from a liver cell line. Pronounced activation of PKL activity, up to 3.8-fold, was observed for several compounds at 10 μM, while other compounds were prominent PKL inhibitors reducing its activity to 81% at best. A structure-activity relationship identified linear-shaped sulfone-sulfonamides as activators and non-linear compounds as inhibitors. Crystal structures revealed the conformations of these modulators, which were used as a reference for designing new modulators.
|
Mar 2023
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[28776]
Abstract: An anion doped aluminium chlorofluoride AlCl0.1F2.8(OTeF5)0.1 (ACF-teflate) was synthesized. The material contains pentafluoroorthotellurate (teflate) groups, which mimic fluoride ions electronically, but are sterically more demanding. They are embedded into the amorphous structure. The latter was studied by PDF analysis, EXAFS data and MAS NMR spectroscopy. The mesoporous powder is a Lewis superacid, and ATR-IR spectra of adsorbed CD3CN reveal a blue-shift of the adsorption band by 73 cm−1, which is larger than the shift for SbF5. Remarkably, ACF-teflate catalyzes dehydrofluorination reactions of monofluoroalkanes to yield olefins in C6D6. In these cases, no Friedel-Crafts products were formed.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[28360]
Abstract: Cystathionine γ-lyase (CGL) is a PLP-dependent enzyme that catalyzes the last step of the reverse transsulfuration route for endogenous cysteine biosynthesis. The canonical CGL-catalyzed process consists of an α,γ-elimination reaction that breaks down cystathionine into cysteine, α-ketobutyrate, and ammonia. In some species, the enzyme can alternatively use cysteine as a substrate, resulting in the production of hydrogen sulfide (H2S). Importantly, inhibition of the enzyme and consequently of its H2S production activity, makes multiresistant bacteria considerably more susceptible to antibiotics. Other organisms, such as Toxoplasma gondii, the causative agent of toxoplasmosis, encode a CGL enzyme (TgCGL) that almost exclusively catalyzes the canonical process, with only minor reactivity to cysteine. Interestingly, the substitution of N360 by a serine (the equivalent amino acid residue in the human enzyme) at the active site changes the specificity of TgCGL for the catalysis of cystathionine, resulting in an enzyme that can cleave both the CγS and the CβS bond of cystathionine. Based on these findings and to deepen the molecular basis underlying the enzyme-substrate specificity, we have elucidated the crystal structures of native TgCGL and the variant TgCGL-N360S from crystals grown in the presence of cystathionine, cysteine, and the inhibitor D,L-propargylglycine (PPG). Our structures reveal the binding mode of each molecule within the catalytic cavity and help explain the inhibitory behavior of cysteine and PPG. A specific inhibitory mechanism of TgCGL by PPG is proposed.
|
Mar 2023
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[29217]
Open Access
Abstract: Metal-organic frameworks (MOFs) are well known for their ability to adsorb various gases. The use of MOFs for the storage and release of biologically active gases, particularly nitric oxide (NO) and carbon monoxide (CO), has been a subject of interest. To elucidate the binding mechanisms and geometry of these gases, an in situ single crystal X-ray diffraction (scXRD) study using synchrotron radiation at Diamond Light Source has been performed on a set of MOFs that display promising gas adsorption properties. NO and CO, were introduced into activated Ni-CPO-27 and the related Co-4,6-dihydroxyisophthalate (Co-4,6-dhip). Both MOFs show strong binding affinity towards CO and NO, however CO suffers more from competitive co-adsorption of water. Additionally, we show that morphology can play an important role in the ease of dehydration for these two systems.
|
Mar 2023
|
|
I09-Surface and Interface Structural Analysis
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
A. S.
Menon
,
B. J.
Johnston
,
S. G.
Booth
,
L.
Zhang
,
K.
Kress
,
B. E.
Murdock
,
G.
Paez Fajardo
,
N. N.
Anthonisamy
,
N.
Tapia-Ruiz
,
S.
Agrestini
,
M.
Garcia-Fernandez
,
K.
Zhou
,
P. K.
Thakur
,
T. L.
Lee
,
A. J.
Nedoma
,
S. A.
Cussen
,
L. F. J.
Piper
Diamond Proposal Number(s):
[29104, 29113]
Open Access
Abstract: The desire to increase the energy density of stoichiometric layered
Li
TM
O
2
(TM = 3d transition metal) cathode materials has promoted investigation into their properties at high states of charge. Although there is increasing evidence for pronounced oxygen participation in the charge compensation mechanism, questions remain whether this is true
O
-redox, as observed in
Li
-excess cathodes. Through a high-resolution
O
K-edge resonant inelastic x-ray spectroscopy (RIXS) study of the
Mn
-free
Ni
-rich layered oxide
Li
Ni
0.98
W
0.02
O
2
, we demonstrate that the same oxidized oxygen environment exists in both
Li
-excess and non-
Li
-excess systems. The observation of identical RIXS loss features in both classes of compounds is remarkable given the differences in their crystallographic structure and delithiation pathways. This lack of a specific structural motif reveals the importance of electron correlation in the charge compensation mechanism for these systems and indicates how a better description of charge compensation in layered oxides is required to understand anionic redox for energy storage.
|
Mar 2023
|
|
B18-Core EXAFS
|
Panpan
Zhang
,
Mingchao
Wang
,
Yannan
Liu
,
Yubin
Fu
,
Mingming
Gao
,
Gang
Wang
,
Faxing
Wang
,
Zhiyong
Wang
,
Guangbo
Chen
,
Sheng
Yang
,
Youwen
Liu
,
Renhao
Dong
,
Minghao
Yu
,
Xing
Lu
,
Xinliang
Feng
Abstract: Although two-dimensional conjugated metal–organic frameworks (2D c-MOFs) provide an ideal platform for precise tailoring of capacitive electrode materials, high-capacitance 2D c-MOFs for non-aqueous supercapacitors remain to be further explored. Herein, we report a novel phthalocyanine-based nickel-bis(dithiolene) (NiS4)-linked 2D c-MOF (denoted as Ni2[CuPcS8]) with outstanding pseudocapacitive properties in 1 M TEABF4/acetonitrile. Each NiS4 linkage is disclosed to reversibly accommodate two electrons, conferring the Ni2[CuPcS8] electrode a two-step Faradic reaction with a record-high specific capacitance among the reported 2D c-MOFs in non-aqueous electrolytes (312 F g–1) and remarkable cycling stability (93.5% after 10,000 cycles). Multiple analyses unveil that the unique electron-storage capability of Ni2[CuPcS8] originates from its localized lowest unoccupied molecular orbital (LUMO) over the nickel-bis(dithiolene) linkage, which allows the efficient delocalization of the injected electrons throughout the conjugated linkage units without inducing apparent bonding stress. The Ni2[CuPcS8] anode is used to demonstrate an asymmetric supercapacitor device that delivers a high operating voltage of 2.3 V, a maximum energy density of 57.4 Wh kg–1, and ultralong stability over 5000 cycles.
|
Mar 2023
|
|