I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[17801, 17203]
Abstract: The good biocompatibility and corrosion resistance of the bulk CoCrMo alloy has resulted in it being used in the manufacture of implants and load bearing medical devices. These devices, however, can release wear and corrosion products which differ from the composition of the bulk CoCrMo alloy. The physicochemical characteristics of the particles and the associated in vivo reactivity are dictated by the wear mechanisms and electrochemical conditions at the sites of material loss. Debris released from CoCrMo hip bearings, taper junctions, or cement–stem interfaces can, therefore, have different chemical and morphological characteristics, which provide them with different in vivo toxicities. Here, we propose to assess and compare the characteristics of the particles released in vivo from CoCrMo tapers and cement–stem interfaces which have received less attention compared to debris originating from the hip bearings. The study uses state‐of‐art characterization techniques to provide a detailed understanding of the size, morphology, composition, and chemistry of the particles liberated from the wear and corrosion flakes from revised hip replacements, with an enzymatic treatment. The phase analyses identified Cr2O3 nanoparticles released from tapers and cement–stem interfaces, whose composition did not vary with origin or particle morphology. The size distributions showed significantly smaller particles were released from the stems, compared to the particles originating from the corresponding tapers. The investigation demonstrates that the tribocorrosive processes occurring at the taper and stem interfaces both result in Cr2O3 nanoparticle formation.
|
Jun 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[17102]
Open Access
Abstract: Understanding peptide self-assembly mechanisms and stability of the formed assemblies is crucial for development of functional nanomaterials. Herein, we have adopted rational design approach to demonstrate how minimal structural modification to a non-assembling ultra-short ionic self-complementary tetrapeptide FEFK (Phe4) remarkably enhanced stability of self-assembly into β-sheet nanofibres and induced hydrogelation. This was achieved by replacing flexible phenylalanine residue (F) by the rigid phenylglycine (Phg) resulting in constrained analogue PhgEPhgK (Phg4), which positioned aromatic rings in an orientation favourable for aromatic stacking. Phg4 self-assembly into stable β-sheet ladders was facilitated by π-staking of aromatic sidechains alongside hydrogen bonding between backbone amides along the nanofibre axis. The contribution of these non-covalent interactions in stabilising self-assembly was predicted by in silico modelling using molecular dynamics simulations and semi-empirical quantum mechanics calculations. In aqueous medium, Phg4 β-sheet nanofibres entangled at a critical gelation concentration > 20 mg/mL forming a network of nanofibrous hydrogel. Phg4 also demonstrated unique surface activity in presence of immiscible oils and was superior to commercial emulsifiers in stabilising oil-in-water emulsions. This was attributed to interfacial adsorption of amphiphilic nanofibrilles forming nanofibrillised microspheres. To our knowledge, Phg4 is the shortest ionic self-complementary peptide rationally designed to self-assemble into stable β-sheet nanofibres capable of gelation and emulsification. Our results suggest that Ultra-short Ionic-complementary Constrained Peptides or UICPs have significant potential for the development of cost-effective, sustainable and multifunctional soft bionanomaterials.
|
May 2020
|
|
B21-High Throughput SAXS
|
Maddalena
Sguizzato
,
Paolo
Mariani
,
Francesca
Ferrara
,
Markus
Drechsler
,
Supandeep
Singh Hallan
,
Nicolas
Huang
,
Fanny
Simelière
,
Nikul
Khunti
,
Rita
Cortesi
,
Nicola
Marchetti
,
Giuseppe
Valacchi
,
Elisabetta
Esposito
Diamond Proposal Number(s):
[21035]
Open Access
Abstract: Caffeic acid is a natural antioxidant, largely distributed in plant tissues and food sources, possessing anti-inflammatory, antimicrobial, and anticarcinogenic properties. The object of this investigation was the development of a formulation for caffeic acid cutaneous administration. To this aim, caffeic acid has been loaded in solid lipid nanoparticles by hot homogenization and ultrasonication, obtaining aqueous dispersions with high drug encapsulation efficiency and 200 nm mean dimension, as assessed by photon correlation spectroscopy. With the aim to improve the consistence of the aqueous nanodispersions, different types of polymers have been considered. Particularly, poloxamer 407 and hyaluronic acid gels containing caffeic acid have been produced and characterized by X-ray and rheological analyses. A Franz cell study enabled to select poloxamer 407, being able to better control caffeic acid diffusion. Thus, a nanoparticulate gel has been produced by addition of poloxamer 407 to nanoparticle dispersions. Notably, caffeic acid diffusion from nanoparticulate gel was eight-fold slower with respect to the aqueous solution. In addition, the spreadability of nanoparticulate gel was suitable for cutaneous administration. Finally, the antioxidant effect of caffeic acid loaded in nanoparticulate gel has been demonstrated by ex-vivo evaluation on human skin explants exposed to cigarette smoke, suggesting a protective role exerted by the nanoparticles.
|
May 2020
|
|
B21-High Throughput SAXS
|
Open Access
Abstract: Development of a sustainable bioeconomy requires valorization of renewable resources, such as wood hemicelluloses. The intra- and inter-molecular associations of hemicelluloses within themselves or with other wood components can result in complex macromolecular features. These features exhibit functionality as hydrocolloids, however macromolecular characterization of these heterogeneous materials are challenging using conventional techniques such as size-exclusion chromatography. We studied galactoglucomannans (GGM) -rich softwood extracts at two grades of purity—as crude extract and after ethanol-precipitation. Asymmetrical flow field-flow fractionation (AF4) was optimized and utilized to fractionate size classes in GGM extracts, and subsequent characterization was performed with light scattering and microscopy techniques. Both GGM extracts contained polysaccharides of around 10,000 g/mol molar mass, and colloidal assemblies and/or particles in sub-micron size range. The optimized AF4 method facilitates the characterization of complex biomass-derived carbohydrates without pre-fractionation, and provides valuable understanding of their unique macromolecular features for their future application in food, pharmaceuticals, and cosmetics.
|
Apr 2020
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Diamond Proposal Number(s):
[17273]
Open Access
Abstract: The mechanisms by which organisms control the stability of amorphous calcium carbonate (ACC) are yet not fully understood. Previous studies have shown that the intrinsic properties of ACC and its environment are critical in determining ACC stability. Here, the question, what is the effect of bulk incorporation versus surface adsorption of additives on the stability of synthetic ACC, is addressed. Using a wide range of in situ characterization techniques, it is shown that surface adsorption of poly(Aspartic acid) (pAsp) has a much larger stabilization effect than bulk incorporation of pAsp and only 1.5% pAsp could dramatically increase the crystallization temperature from 141 to 350 °C. On the contrary, surface adsorption of PO43− ions and OH− ions does not effectively stabilize ACC. However, bulk incorporation of these ions could significantly improve the ACC stability. It is concluded that the stabilization mechanism of pAsp is entirely different from that of PO43− and OH− ions: while pAsp is effectively inhibiting calcite nucleation at the surface of ACC particle, the latter acts to modify the ion mobility and delay crystal propagation. Thus, new insights on controlling the stability and crystallization processes of metastable amorphous materials are provided.
|
Apr 2020
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[18523]
Abstract: A molecular design approach to fabricate nanofibrous membranes by self-assembly of aromatic cationic peptides with hyaluronic acid (HA) and nanofiber alignment under a magnetic field is reported. Peptides are designed to contain a block composed of four phenylalanine residues at the C-terminus, to drive their self-assembly by hydrophobic association and aromatic stacking, and a positively charged domain of lysine residues for electrostatic interaction with HA. These two blocks are connected by a linker with a variable number of amino acids and ability to adopt distinct conformations. Zeta potential measurements and circular dichroism confirm their positive charge and variable conformation (random coil, beta-sheet or alpha-helix), which depend on the pH and sequence. Their self-assembly, examined by fluorescence spectroscopy, small-angle X-ray scattering and transmission electron microscopy, show the formation of fiber-like nanostructures in the micromolar range. When the peptides are combined with HA, hydrogels or flat membranes are formed. The molecular structure tunes the mechanical behavior of the membranes and the nanofibers align in the direction of magnetic field due to the high diamagnetic anisotropy of phenylalanine residues. Mesenchymal stem cells cultured on magnetically-aligned membranes elongate in direction of the nanofibers supporting their application for soft tissue engineering.
|
Apr 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[16500]
Abstract: Simultaneous synchrotron small- and wide-angle X-ray scattering (SAXS/WAXS) was used to follow the crystalline morphology evolution of poly-L- lactic acid (PLLA) during uniaxial deformation at various draw temperatures (Td). The mechanical behaviour of PLLA, was found to be strongly dependent on Td. 2D SAXS/WAXS data taken during the draw showed that at low Tds cavitation and voiding occurred and the initial crystallites underwent ‘overdrawing’ where they slip and are partially destroyed. SEM confirmed that surface voiding and cavitation had occurred at Td = 60 and 65 °C but was absent at higher Tds. During the draw, no long-range macromolecular lamellar structure was seen in the SAXS, but small crystallites of the disordered α′ crystal form of PLLA were observed in the WAXS at all Tds. The PLLA samples were then step annealed in a second processing stage (post-draw) to develop the oriented crystalline lamellar structure and increase the amount of the stable α crystalline form. SAXS/WAXS data showed that a highly oriented lamellar stack macrostructure developed on annealing, with increased crystallite size and crystallinity at all Tds. Furthermore, step annealing drove the crystalline transition in all samples from the disordered α′ crystal form to the stable α crystal form. Therefore, varying pre- and post-processing parameters can significantly influence the mechanical properties, orientation, crystalline morphology and crystal phase transition of the final PLLA material.
|
Apr 2020
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[11079]
Open Access
Abstract: Poly(3-hydroxybutyrate-co-4-hydroxybutyrate), P(3HB-4HB), and siloxane-doped vaterite (SiV) composite fibrous scaffolds with 3D cotton-wool-like structure were developed using an electrospinning system for use in bone tissue regeneration. Scaffolds exhibited a significantly larger fiber-fiber separation distribution than non-woven fiber mats as observed with micro-computed tomographic studies. Coating the hydrophobic P(3HB-4HB)/SiV fibers with imogolite nanotubes (INT), aluminum silicate nanotubes, made the 3D construct hydrophilic and improved water penetration into the 3D structure (~2 s). Coating efficacy was confirmed by the detection of aluminum on the surface of fibers using scanning electron microscopy (SEM) energy dispersive spectroscopy (EDS). Dissolution experiments showed increased release of silicate ions in cell culture medium which can improve migration and mineralization of osteogenic cells inside of the 3D structure. The coating also contributed to an enhanced adhesion and migration of osteoblast-like cells (SaOS-2) within the 3D construct. The differentiation and mineralization of the cells were not affected by the coating. The coating for such cotton-wool-like structured scaffolds was effective for an enhancement of cell functions on early stages of culture. Thus, the developed materials with 3D structure, flexibility, silicate-ion release ability, and cell compatibility are expected to be good candidate materials for bone tissue regeneration.
|
Feb 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[20365]
Abstract: Understanding interactions between nanoparticles and model membranes is relevant to functional nano-composites and the fundamentals of nanotoxicity. In this study, the effect of polyamidoamine (PAMAM) dendrimers as model nanoparticles (NP) on the mesophase behaviour of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) has been investigated using high-pressure small-angle X-ray scattering (HP-SAXS). The pressure-temperature (
p−T
) diagrams for POPE mesophases in excess water were obtained in the absence and presence of G2 and G4 polyamidoamine (PAMAM) dendrimers (29 Å and 45 Å in diameter, respectively) at varying NP-lipid number ratio (ν = 0.0002-0.02) over the pressure range p = 1-3000 bar and temperature range T = 20–80°C. The
p−T
phase diagram of POPE exhibited the Lβ, Lα and HII phases. Complete analysis of the phase diagrams, including the relative area pervaded by different phases, phase transition temperatures (Tt) and pressures (pt), the lattice parameters (d-spacing), the pressure-dependence of d-spacing (Δd/Δp), and the structural ordering in the mesophase as gauged by the Scherrer coherence length (L) permitted insights into the size- and concentration-dependent interactions between the dendrimers and the model membrane system. The addition of dendrimers changed the phase transition pressure and temperature and resulted in the emergence of highly swollen lamellar phases, dubbed Lβ-den and Lα-den. G4 PAMAM dendrimers at the highest concentration ν = 0.02 suppressed the formation of the HII phase within the temperature range studied, whereas the addition of G2 PAMAM dendrimers at the same concentration promoted an extended mixed lamellar region in which Lα and Lβ phases coexisted.
|
Jan 2020
|
|
I11-High Resolution Powder Diffraction
|
Yi-Yeoun
Kim
,
Robert
Darkins
,
Alexander
Broad
,
Alexander N.
Kulak
,
Mark A.
Holden
,
Ouassef
Nahi
,
Steven P.
Armes
,
Chiu C.
Tang
,
Rebecca F.
Thompson
,
Frederic
Marin
,
Dorothy M.
Duffy
,
Fiona C.
Meldrum
Open Access
Abstract: Acidic macromolecules are traditionally considered key to calcium carbonate biomineralisation and have long been first choice in the bio-inspired synthesis of crystalline materials. Here, we challenge this view and demonstrate that low-charge macromolecules can vastly outperform their acidic counterparts in the synthesis of nanocomposites. Using gold nanoparticles functionalised with low charge, hydroxyl-rich proteins and homopolymers as growth additives, we show that extremely high concentrations of nanoparticles can be incorporated within calcite single crystals, while maintaining the continuity of the lattice and the original rhombohedral morphologies of the crystals. The nanoparticles are perfectly dispersed within the host crystal and at high concentrations are so closely apposed that they exhibit plasmon coupling and induce an unexpected contraction of the crystal lattice. The versatility of this strategy is then demonstrated by extension to alternative host crystals. This simple and scalable occlusion approach opens the door to a novel class of single crystal nanocomposites.
|
Dec 2019
|
|