I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[15478, 14948, 12950]
Open Access
Abstract: Graphene oxide (GO) forms a well-aligned lyotropic liquid crystal (LC) phase in aqueous dispersions at relatively low concentrations. Under a remarkably wide range of shear rates, we report hitherto unobserved shear-induced polarized light image patterns, a Maltese cross combined with shear banding, recorded in real time and in situ during rheological measurements. This is shown to be a result of elastic flow instabilities that manifest as a helical flow in alternating bands of left- and right-handed helices, arising from a combination of shear flow and Taylor-type vortex flow. The instability is observed for LCs formed from large aspect ratio GO particles owing to their unique viscoelastic properties, but not for smaller aspect ratio particles. This phenomenon coincides with rheopecty and anomalous small-angle X-ray scattering patterns under shear flow, which confirm the instabilities. The results presented here could lead to advanced control over macroscopic periodic alignment in technologically relevant dispersions of two-dimensional material particles.
|
Jan 2021
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
|
Vitor
Mendes
,
Simon R.
Green
,
Joanna C.
Evans
,
Jeannine
Hess
,
Michael
Blaszczyk
,
Christina
Spry
,
Owain
Bryant
,
James
Cory-wright
,
Daniel S-h.
Chan
,
Pedro H. M.
Torres
,
Zhe
Wang
,
Navid
Nahiyaan
,
Sandra
O’neill
,
Sebastian
Damerow
,
John
Post
,
Tracy
Bayliss
,
Sasha L.
Lynch
,
Anthony G.
Coyne
,
Peter C.
Ray
,
Chris
Abell
,
Kyu Y.
Rhee
,
Helena I. M.
Boshoff
,
Clifton E.
Barry
,
Valerie
Mizrahi
,
Paul G.
Wyatt
,
Tom L.
Blundell
Diamond Proposal Number(s):
[9537, 14043, 18548]
Open Access
Abstract: Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.
|
Jan 2021
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[21776]
Open Access
Abstract: The persulfate-initiated aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) is studied by time-resolved small-angle X-ray scattering (SAXS) at 60 °C using a stirrable reaction cell. TFEMA was preferred to styrene because it offers much greater X-ray scattering contrast relative to water, which is essential for sufficient temporal resolution. The evolution in particle size is monitored by both in situ SAXS and ex situ DLS in the absence or presence of an anionic surfactant (sodium dodecyl sulfate, SDS). Post-mortem SAXS studies confirmed the formation of well-defined spherical latexes, with volume-average diameters of 353 ± 9 nm and 68 ± 4 nm being obtained for the surfactant-free and SDS formulations, respectively. 1H NMR spectroscopy studies of the equivalent laboratory-scale formulations indicated TFEMA conversions of 99% within 80 min and 93% within 60 min for the surfactant-free and SDS formulations, respectively. Comparable polymerization kinetics are observed for the in situ SAXS experiments and the laboratory-scale syntheses, with nucleation occurring after approximately 6 min in each case. After nucleation, scattering patterns are fitted using a hard sphere scattering model to determine the evolution in particle growth for both formulations. Moreover, in situ SAXS enables identification of the three main intervals (I, II, and III) that are observed during aqueous emulsion polymerization in the presence of surfactant. These intervals are consistent with those indicated by solution conductivity and optical microscopy studies. Significant differences between the surfactant-free and SDS formulations are observed, providing useful insights into the mechanism of emulsion polymerization.
|
Jan 2021
|
|
|
Bikshapathi
Jagga
,
Megan
Edwards
,
Miriam
Pagin
,
Kylie M.
Wagstaffe
,
David
Aragao
,
Noelia
Roman
,
Jeffrey D.
Nanson
,
Shane R.
Raidal
,
Nicole
Dominado
,
Murray
Stewart
,
David A.
Jans
,
Gary R.
Hime
,
Silvia K.
Nicolis
,
Christopher F.
Basler
,
Jade K.
Forwood
Open Access
Abstract: SOX (SRY-related HMG-box) transcription factors perform critical functions in development and cell differentiation. These roles depend on precise nuclear trafficking, with mutations in the nuclear targeting regions causing developmental diseases and a range of cancers. SOX protein nuclear localization is proposed to be mediated by two nuclear localization signals (NLSs) positioned within the extremities of the DNA-binding HMG-box domain and, although mutations within either cause disease, the mechanistic basis has remained unclear. Unexpectedly, we find here that these two distantly positioned NLSs of SOX2 contribute to a contiguous interface spanning 9 of the 10 ARM domains on the nuclear import adapter IMPα3. We identify key binding determinants and show this interface is critical for neural stem cell maintenance and for Drosophila development. Moreover, we identify a structural basis for the preference of SOX2 binding to IMPα3. In addition to defining the structural basis for SOX protein localization, these results provide a platform for understanding how mutations and post-translational modifications within these regions may modulate nuclear localization and result in clinical disease, and also how other proteins containing multiple NLSs may bind IMPα through an extended recognition interface.
|
Jan 2021
|
|
I19-Small Molecule Single Crystal Diffraction
|
Sérgio M. F.
Vilela
,
Jorge A. R.
Navarro
,
Paula
Barbosa
,
Ricardo F.
Mendes
,
Germán
Pérez-sánchez
,
Harriott
Nowell
,
Duarte
Ananias
,
Filipe
Figueiredo
,
José R. B.
Gomes
,
João P. C.
Tomé
,
Filipe A.
Almeida Paz
Abstract: Porous robust materials are typically the primary selection of several industrial processes. Many of these compounds are, however, not robust enough to be used as multifunctional materials. This is typically the case of Metal–Organic Frameworks (MOFs) which rarely combine several different excellent functionalities into the same material. In this report we describe the simple acid–base postsynthetic modification of isotypical porous rare-earth-phosphonate MOFs into a truly multifunctional system, maintaining the original porosity features: [Ln(H3pptd)]·xSolvent [where Ln3+ = Y3+ (1) and (Y0.95Eu0.05)3+ (1_Eu)] are converted into [K3Ln(pptd)]·zSolvent [where Ln3+ = Y3+ (1K) and (Y0.95Eu0.05)3+ (1K_Eu)] by immersing the powder of 1 and 1_Eu into an ethanolic solution of KOH for 48 h. The K+-exchanged Eu3+-based material exhibits a considerable boost in CO2 adsorption, capable of being reused for several consecutive cycles. It can further separate C2H2 from CO2 from a complex ternary gas mixture composed of CH4, CO2, and C2H2. This high adsorption selectivity is, additionally, observed for other gaseous mixtures, such as C3H6 and C3H8, with all these results being supported by detailed theoretical calculations. The incorporation of K+ ions notably increases the electrical conductivity by 4 orders of magnitude in high relative humidity conditions. The conductivity is assumed to be predominantly protonic in nature, rendering this material as one of the best conducting MOFs reported to date.
|
Jan 2021
|
|
B21-High Throughput SAXS
|
Diamond Proposal Number(s):
[22113]
Open Access
Abstract: Rift Valley fever virus (RVFV) is a mosquito-transmitted virus from the Bunyaviridae family that causes high rates of mortality and morbidity in humans and ruminant animals. Previous studies indicated that DEAD-box helicase 17 (DDX17) restricts RVFV replication by recognizing two primary non-coding RNAs in the S-segment of the genome: the intergenic region (IGR) and 5′ non-coding region (NCR). However, we lack molecular insights into the direct binding of DDX17 with RVFV non-coding RNAs and information on the unwinding of both non-coding RNAs by DDX17. Therefore, we performed an extensive biophysical analysis of the DDX17 helicase domain (DDX17135–555) and RVFV non-coding RNAs, IGR and 5’ NCR. The homogeneity studies using analytical ultracentrifugation indicated that DDX17135–555, IGR, and 5’ NCR are pure. Next, we performed small-angle X-ray scattering (SAXS) experiments, which suggested that DDX17 and both RNAs are homogenous as well. SAXS analysis also demonstrated that DDX17 is globular to an extent, whereas the RNAs adopt an extended conformation in solution. Subsequently, microscale thermophoresis (MST) experiments were performed to investigate the direct binding of DDX17 to the non-coding RNAs. The MST experiments demonstrated that DDX17 binds with the IGR and 5’ NCR with a dissociation constant of 5.77 ± 0.15 µM and 9.85 ± 0.11 µM, respectively. As DDX17135–555 is an RNA helicase, we next determined if it could unwind IGR and NCR. We developed a helicase assay using MST and fluorescently-labeled oligos, which suggested DDX17135–555 can unwind both RNAs. Overall, our study provides direct evidence of DDX17135–555 interacting with and unwinding RVFV non-coding regions.
|
Jan 2021
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[14769]
Open Access
Abstract: The Tuberous Sclerosis Complex (TSC) protein complex (TSCC), comprising TSC1, TSC2, and TBC1D7, is widely recognised as a key integration hub for cell growth and intracellular stress signals upstream of the mammalian target of rapamycin complex 1 (mTORC1). The TSCC negatively regulates mTORC1 by acting as a GTPase-activating protein (GAP) towards the small GTPase Rheb. Both human TSC1 and TSC2 are important tumour suppressors, and mutations in them underlie the disease tuberous sclerosis.
We used single-particle cryo-EM to reveal the organisation and architecture of the complete human TSCC. We show that TSCC forms an elongated scorpion-like structure, consisting of a central “body”, with a “pincer” and a “tail” at the respective ends. The “body” is composed of a flexible TSC2 HEAT repeat dimer, along the surface of which runs the TSC1 coiled-coil backbone, breaking the symmetry of the dimer. Each end of the body is structurally distinct, representing the N- and C-termini of TSC1; a “pincer” is formed by the highly flexible N-terminal TSC1 core domains and a barbed “tail” makes up the TSC1 coiled-coil-TBC1D7 junction. The TSC2 GAP domain is found abutting the centre of the body on each side of the dimerisation interface, poised to bind a pair of Rheb molecules at a similar separation to the pair in activated mTORC1.
Our architectural dissection reveals the mode of association and topology of the complex, casts light on the recruitment of Rheb to the TSCC, and also hints at functional higher order oligomerisation, which has previously been predicted to be important for Rheb-signalling suppression.
|
Jan 2021
|
|
I10-Beamline for Advanced Dichroism
|
Diamond Proposal Number(s):
[18898, 23895]
Open Access
Abstract: Synchrotron radiation based techniques provide unique insight into both the element and time resolved magnetization behavior in magnetic spin systems. Here, we highlight the power of two recent developments, utilizing x-ray scattering techniques to reveal the precessional magnetization dynamics of ordered spin structures in the GHz regime, both in diffraction and reflection configurations. Our recently developed diffraction and reflectometry ferromagnetic resonance (DFMR and RFMR) techniques provide novel ways to explore the dynamics of modern magnetic materials, thereby opening up new pathways for the development of spintronic devices. In this paper we provide an overview of these techniques, and discuss the new understanding they provide into the magnetization dynamics in the chiral magnetic structure in Y-type hexaferrite and the depth dependence to the magnetization dynamics in a [CoFeB/MgO/Ta]4 multilayer.
|
Jan 2021
|
|
I13-2-Diamond Manchester Imaging
|
Open Access
Abstract: Fetal immobilization affects skeletal development and can lead to severe malformations. Still, how mechanical load affects embryonic bone formation is not fully elucidated. This study combines mechanobiology, image analysis and developmental biology, to investigate the structural effects of muscular loading on embryonic long bones. We present a novel approach involving a semi-automatic workflow, to study the spatial and temporal evolutions of both hard and soft tissues in 3D without any contrast agent at micrometrical resolution. Using high-resolution phase-contrast-enhanced X-ray synchrotron microtomography, we compare the humeri of Splotch-delayed embryonic mice lacking skeletal muscles with healthy littermates. The effects of skeletal muscles on bone formation was studied from the first stages of mineral deposition (Theiler Stages 23 and 24) to just before birth (Theiler Stage 27). The results show that muscle activity affects both growth plate and mineralized regions, especially during early embryonic development. When skeletal muscles were absent, there was reduced mineralization, altered tuberosity size and location, and, at early embryonic stages, decreased chondrocyte density, size and elongation compared to littermate controls. The proposed workflow enhances our understanding of mechanobiology of early bone formation and could be implemented for the study of other complex biological tissues.
|
Jan 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[24074]
Open Access
Abstract: Uranyl oxalate (UO2C2O4·xH2O) may exist at the back-end of the nuclear fuel cycle (NFC) as an intermediate in spent fuel reprocessing. The conditions used in aqueous reprocessing and thermal treatment can affect the physical and chemical properties of the material. Furthermore, trace impurities, such as Fe, may incorporate into the structure of these materials. In nuclear forensics, understanding relationships between processing variables aids in determination of provenance and processing history. In this study, the thermal decomposition of UO2C2O4·3H2O and phase analysis of its thermal products are examined. Their morphologies are discussed with respect to a matrix of solution processing conditions.
|
Jan 2021
|
|