I11-High Resolution Powder Diffraction
|
Abstract: While Ti-Nb binary alloys have been extensively studied over the years, there are discrepancies in the literature relating to the β-α″ martensitic transformation that indicate an incomplete understanding. In particular, there are inconsistencies regarding the phase constitution of as-quenched material and the ability for α″ phase to be thermally-induced. To resolve these issues, the β-α″ phase transformation is studied in a Ti-24Nb (at.%) alloy subjected to two different water quench conditions. It is demonstrated that only the fastest quench rates (≳500˚C/s) result in the formation of α″ phase, and these materials exhibit a reversible thermally-induced β-α″ transformation at low temperatures. In contrast, slightly slower water quench procedures lead to a β+ω microstructure, and these samples do not exhibit a thermally-induced β-α″ transformation, even when cooled to -168˚C. Despite this, room temperature mechanical testing results indicate that α″ can be induced by stresses as low as 200 MPa. To explain these results, it is proposed that quenching stresses play a role in the competition between α″ and athermal ω phases at rapid quench rates. The present results are then reconciled with the body of literature and a broader understanding of phase stability in metastable β-titanium alloys.
|
Apr 2021
|
|
I24-Microfocus Macromolecular Crystallography
|
Stefano
De Benedetti
,
Flavio
Di Pisa
,
Enrico Mario Alessandro
Fassi
,
Marina
Cretich
,
Angelo
Musicò
,
Roberto
Frigerio
,
Alessandro
Mussida
,
Mauro
Bombaci
,
Renata
Grifantini
,
Giorgio
Colombo
,
Martino
Bolognesi
,
Romualdo
Grande
,
Nadia
Zanchetta
,
Maria Rita
Gismondo
,
Davide
Mileto
,
Alessandro
Mancon
,
Louise Jane
Gourlay
Diamond Proposal Number(s):
[5912]
Open Access
Abstract: The human parasitic disease Schistosomiasis is caused by the Schistosoma trematode flatworm that infects freshwaters in tropical regions of the world, particularly in Sub-Saharan Africa, South America, and the Far-East. It has also been observed as an emerging disease in Europe, due to increased immigration. In addition to improved therapeutic strategies, it is imperative to develop novel, rapid, and sensitive diagnostic tests that can detect the Schistosoma parasite, allowing timely treatment. Present diagnosis is difficult and involves microscopy-based detection of Schistosoma eggs in the feces. In this context, we present the 3.22 Å resolution crystal structure of the circulating antigen Serine protease inhibitor from S. mansoni (SmSPI), and we describe it as a potential serodiagnostic marker. Moreover, we identify three potential immunoreactive epitopes using in silico-based epitope mapping methods. Here, we confirm effective immune sera reactivity of the recombinant antigen, suggesting the further investigation of the protein and/or its predicted epitopes as serodiagnostic Schistosomiasis biomarkers.
|
Apr 2021
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[26630]
Open Access
Abstract: Organic solar cells (OSCs), also known as organic photovoltaics (OPVs), are an emerging solar cell technology composed of carbon-based, organic molecules, which convert energy from the sun into electricity. Key for their performance is the microstructure of the light-absorbing organic bulk heterojunction. To study this, organic solar films composed of both fullerene C60 as electron acceptor and different mole percentages of di-[4-(N,N-di-p-tolyl-amino)-phenyl]-cyclohexane (TAPC) as electron donor were evaporated in vacuum in different mixing ratios (5, 50 and 95 mol%) on an ITO-coated glass substrate held at room temperature and at 110 °C. The microstructure of the C60: TAPC heterojunction was studied by grazing incidence wide angle X-ray scattering to understand the effect of substrate heating. By increasing the substrate temperature from ambient to 110 °C, it was found that no significant change was observed in the crystal size for the C60: TAPC concentrations investigated in this study. In addition to the variation done in the substrate temperature, the variation of the mole percent of the donor (TAPC) was studied to conclude the effect of both the substrate temperature and the donor concentration on the microstructure of the OSC films. Bragg peaks were attributed to C60 in the pure C60 sample and in the blend with low donor mole percentage (5%), but the C60 peaks became nondiscernible when the donor mole percentage was increased to 50% and above, showing that TAPC interrupted the formation of C60 crystals.
|
Apr 2021
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[8682]
Abstract: Herein we present a rearomative diastereoselective etherification/amination reaction of 2,3,9,9a-tetrahydro-
1H-carbazoles, themselves accessible via the Diels-Alder reaction of N-protected 3-vinyl-1H-indoles. We
have developed a one-pot rearomative bromination/nucleophilic substitution reaction sequence employing both
O- and N-centred nucleophiles, inverting the typical reactivity of 2,3,9,9a-tetrahydro-1H-carbazoles at the
4-position. Alcohols or secondary amines can be incorporated allowing access to the corresponding 4-substituted-
2,3,4,9-tetrahydro-1H-carbazoles, the diastereoselectivity of the reaction being controlled by the nature of
the nucleophile and the reaction conditions.
|
Apr 2021
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[23538]
Abstract: n this work the suitability of nanostructured ferrite materials with the general formula AFe2O4 (where A is a divalent cation) for photocatalytic applications is investigated. Spinel ferrite MgFe2O4 nanoparticles and macroporous CaFe2O4 sponge structures were produced by microwave-assisted syntheses in high-boiling organic solvents and subsequent calcination in air. The elemental composition of the products was monitored by energy dispersive X-ray spectroscopy and the synthesis procedures were optimized to ensure an ideal stoichiometry of the products. Phase purity of the products was confirmed by calcination studies combined with diffraction experiments and by a wide variety of spectroscopic techniques. The morphology of the ferrite materials is characterized by electron microscopy, gas physisorption and mercury intrusion porosimetry. Regarding the electronic band structure of ferrites, a vast dissent is found in published literature. This is addressed by a thorough characterization of the electronic structure using photoelectrochemical measurements, X-ray based spectroscopic techniques, and by a detailed interpretation of their optical absorption spectra. The determined band positions suggest that CaFe2O4 is suitable for photocatalytic hydrogen evolution under visible light, while MgFe2O4 is not. Nevertheless, both phases remain inactive in hydrogen evolution test reactions as well as other photocatalytic experiments. X-ray based spectroscopy suggests that the presence of a transition metal with d5 electronic configuration causes a strong discrepancy between the fundamental electronic band gap and the one determined by optical spectroscopy. The Fe3+ crystal field orbitals involved in the ligand-to-metal charge transfer excitations that are responsible for the absorption of visible light are highly localized at the Fe3+ centers. The weak orbital overlap causes a low mobility of excited charge carriers explaining the inactivity in photocatalysis. Additional to the optical and photocatalytic properties, the magnetism of the synthesized materials is investigated by Mössbauer spectroscopy and SQUID magnetometry. While CaFe2O4 exhibits antiferromagnetic behavior, the MgFe2O4 nanoparticles exhibit a tunable magnetization, that depends on crystallite size and cation inversion and is therefore adjustable by post-synthetic calcination. First attempts towards the synthesis of magnetic NiFe2O4 and MnFe2O4 nanoparticles were made, to extend the scope of magnetic nanoparticles that can be synthesized via the microwave-assisted reaction. Attempting to combine the optical and magnetic characteristics of ferrites with other chemical functionalities in a composite material, phase-pure MgFe2O4 nanoparticles were immobilized on functionalized, ordered-mesoporous SiO2 and organosilica host networks.
|
Apr 2021
|
|
I04-Macromolecular Crystallography
|
Hermen S.
Overkleeft
,
Sybrin
Schröder
,
Wendy
Offen
,
Alexandra
Males
,
Yi
Jin
,
Casper
De Boer
,
Jacopo
Enotarpi
,
Gijs
Van Der Marel
,
Bogdan
Florea
,
Jeroen
Codée
,
Gideon
Davies
Diamond Proposal Number(s):
[13587, 18598]
Abstract: There is a vast genomic resource for enzymes active on carbohydrates. Lagging far behind, however, are functional chemical tools for the rapid characterization of carbohydrate‐active enzymes. Activity‐based probes (ABPs) offer one chemical solution to these issues with ABPs based upon cyclophellitol epoxide and aziridine covalent and irreversible inhibitors representing a potent and widespread approach. Such inhibitors for enzymes active on polysaccharides are potentially limited by the requirement for several glycosidic bonds, themselves substrates for the enzyme targets. Here we show that non‐hydrolysable trisaccharide can be synthesized and applied even to enzymes with challenging subsite requirements. We find that incorporation of carbasugar moieties, which we accomplished by cuprate‐assisted regioselective trans‐diaxial epoxide opening of carba‐mannal we synthesised for this purpose, yields inactivators that act as powerful activity‐based inhibitors for a‐1,6 endo‐mannanases. 3‐D structures at 1.35 – 1.47 Å resolutions confirm the design rationale and binding to the enzymatic nucleophile. Carbasugar oligosaccharide cyclophellitols offer a powerful new approach for the design of robust endoglycosidase inhibitors, while the synthesis procedures presented here should allow adaptation towards activity‐based endoglycosidase probes as well as configurational isosteres targeting other endoglycosidase families.
|
Apr 2021
|
|
I05-ARPES
|
X.
Lou
,
T. l.
Yu
,
Y. h.
Song
,
C. h. P.
Wen
,
W. z.
Wei
,
A.
Leithe-Jasper
,
Z. f.
Ding
,
L.
Shu
,
S.
Kirchner
,
H. C.
Xu
,
R.
Peng
,
D. L.
Feng
Diamond Proposal Number(s):
[22518]
Abstract: CeOs
4
Sb
12
(COS) and
PrOs
4
Sb
12
(POS) are two representative compounds that provide the ideal vantage point to systematically study the physics of multi-
f
-electron systems. COS with Ce
4
f
1
, and POS with Pr
4
f
2
configurations show distinct properties of Kondo insulating and heavy fermion superconductivity, respectively. We unveiled the underlying microscopic origin by angle-resolved photoemission spectroscopy studies. Their eV-scale band structure matches well, representing the common characters of conduction electrons in
R
Os
4
Sb
12
systems (
R
=
rare
earth
). However,
f
electrons interact differently with conduction electrons in COS and POS. Strong hybridization between conduction electrons and
f
electrons is observed in COS with band dependent hybridization gaps, and the development of a Kondo insulating state is directly revealed. Although the ground state of POS is a singlet, finite but incoherent hybridization exists, which can be explained by the Kondo scattering with the thermally excited triplet crystalline electric field state. Our results help us to understand the intriguing properties in COS and POS, and provide a clean demonstration of the microscopic differences in heavy fermion systems with
4
f
1
and
4
f
2
configurations.
|
Apr 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[15151]
Abstract: Hydrothermal degreening and ageing procedures were applied to a tri-metal (Pt-Pd-Rh) fully formulated lean NOX Trap catalyst to evaluate the effects of thermal stress on the performances and structural properties. X-ray absorption fine structure (XAFS) analysis revealed that the average size of the platinum particles was the same after degreening and ageing treatments. The formation of a new phase of alloyed Pt-Pd was observed to increase with the thermal load. The size of the ceria particles also increased after the ageing treatment. NOX storage capacity experiments revealed a substantial decrease of the concentration of active NOX storage sites which correlated with both ageing and degreening protocols. The performances of the treated catalyst were evaluated through spatially resolved (SpaciMS) lean-rich cycles. During the lean phase, the impact of the decrease in storage sites was significant on the aged sample, where an enlargement of the area required to achieve full storage was observed. On the other hand, the regeneration functionalities did not appear to be particularly affected by ageing. Rather, the aged sample showed a decrease of oxygen storage capacity (OSC), which promoted a lower reductant consumption and therefore a quicker and more efficient reduction process. On the other hand, the different distributions of adsorbed species by the end of the lean phase produced greater spread presence of NH3 and NOX slip along the channels of the aged sample during the reduction.
|
Apr 2021
|
|
|
Abstract: Understanding how catalytic asymmetric reactions with racemic starting materials can operate would enable new enantioselective cross-coupling reactions that give chiral products. Here we propose a catalytic cycle for the highly enantioselective Rh(I)-catalysed Suzuki–Miyaura coupling of boronic acids and racemic allyl halides. Natural abundance 13C kinetic isotope effects provide quantitative information about the transition-state structures of two key elementary steps in the catalytic cycle, transmetallation and oxidative addition. Experiments with configurationally stable, deuterium-labelled substrates revealed that oxidative addition can happen via syn- or anti-pathways, which control diastereoselectivity. Density functional theory calculations attribute the extremely high enantioselectivity to reductive elimination from a common Rh complex formed from both allyl halide enantiomers. Our conclusions are supported by analysis of the reaction kinetics. These insights into the sequence of bond-forming steps and their transition-state structures will contribute to our understanding of asymmetric Rh–allyl chemistry and enable the discovery and application of asymmetric reactions with racemic substrates.
|
Apr 2021
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Martin Alexander
Lange
,
Ibrahim
Khan
,
Phil
Opitz
,
Jens
Hartmann
,
Muhammad
Ashraf
,
Ahsanulhaq
Qurashi
,
Leon
Prädel
,
Martin
Panthofer
,
Antje
Cossmer
,
Jens
Pfeifer
,
Fabian
Simon
,
Marcus
Von Der Au
,
Björn
Meermann
,
Mihail
Mondeshki
,
Muhammad Nawaz
Tahir
,
Wolfgang
Tremel
Diamond Proposal Number(s):
[23320]
Open Access
Abstract: A general method to carry out the fluorination of metal oxides with poly(tetrafluoroethylene) (PTFE, Teflon) waste by spark plasma sintering (SPS) on a minute scale with Teflon is reported. The potential of this new approach is highlighted by the following results. i) The tantalum oxyfluorides Ta3O7F and TaO2F are obtained from plastic scrap without using toxic or caustic chemicals for fluorination. ii) Short reaction times (minutes rather than days) reduce the process time the energy costs by almost three orders of magnitude. iii) The oxyfluorides Ta3O7F and TaO2F are produced in gram amounts of nanoparticles. Their synthesis can be upscaled to the kg range with industrial sintering equipment. iv) SPS processing changes the catalytic properties: while conventionally prepared Ta3O7F and TaO2F show little catalytic activity, SPS‐prepared Ta3O7F and TaO2F exhibit high activity for photocatalytic oxygen evolution, reaching photoconversion efficiencies up to 24.7% and applied bias to photoconversion values of 0.86%. This study shows that the materials properties are dictated by the processing which poses new challenges to understand and predict the underlying factors.
|
Apr 2021
|
|