I15-1-X-ray Pair Distribution Function (XPDF)
|
Marcin W.
Orzech
,
Francesco
Mazzali
,
Arturas
Adomkevicius
,
Mauro
Coduri
,
Yubiao
Niu
,
James D.
Mcgettrick
,
Philip A.
Chater
,
Laura
Cabo-Fernandez
,
Laurence J.
Hardwick
,
Lorenzo
Malavasi
,
Serena
Margadonna
Diamond Proposal Number(s):
[19325]
Open Access
Abstract: Sodium-ion batteries represent a sustainable and cost-effective solution for grid-scale energy storage. However, the reliance on cathode materials containing scarce transition metals currently limits their wider adoption. Carbonaceous materials present an environmentally sustainable and economically viable alternative. This study investigates application of reduced graphene oxide as a cathode active material. Detailed analysis of the storage mechanism and its dependency on the morphological and chemical structure, revealed that the key factors responsible for high capacity and long cycle life are the open structure of graphene sheets and the presence of functional oxygen and nitrogen groups. Good understanding of the mechanism allowed optimisation of cycling conditions in a proof-of-concept all-carbon full cell incorporating reduced graphene oxide and hard carbon as cathode and anode, respectively. The system displays good energy density (80 Wh kg-1) and remarkable stability over 500 cycles. The gained insights will support rational design of more efficient carbonaceous electrodes.
|
Sep 2024
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Diamond Proposal Number(s):
[25785]
Abstract: As part of the transition to net zero, the Faraday Institution’s CATMAT (Lithium Ion Cathode Materials) project is focusing on improving lithium-ion battery energy density and electric vehicle (EV) range. Its scope includes adding to our understanding of lithium-rich (Li-rich) oxygen-redox cathodes and novel anion-chemistry cathodes, as well as developing scalable synthesis routes for these materials. As part of this project, researchers from the University of Oxford are working with Diamond’s I21 beamline to explore the cause of voltage fade in Li-rich cathodes, using high-resolution resonant inelastic X-ray scattering (RIXS) spectroscopy. In work recently published in Nature Materials, they followed the oxygen redox reaction in Li-rich cathodes over cycling and quantitatively measured the O2 trapped within the material. Their results show that a gradual increase in electrochemically inactive O2 and the loss of O2 from voids near the cathode surface lead to a reduction in the O redox capacity and the observed voltage fade. These important insights could lead to innovations in cathode chemistry and aid the transition to low-carbon energy sources.
|
Sep 2024
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[30357]
Open Access
Abstract: 1,1,1-trifluoroethyl methyl carbonate (FEMC) is a popular non-flammable solvent for lithium-ion battery electrolytes, although its high irreversible capacity means it can only be used with film-forming additives like fluoroethylene carbonate (FEC). This work studies the origin of the high irreversible capacity of FEMC-containing cells. Scanning electron microscopy and Raman spectroscopy of graphite anodes after charging and discharging in an FEMC electrolyte show evidence of significant physical and chemical graphite degradation, likely caused by solvent co-intercalation, which is probably responsible for a large portion of the capacity loss. X-ray photoelectron spectroscopy analysis of the anodes shows very low graphite signals, a sign of graphite degradation, formation of a thick solid electrolyte interphase (SEI), or both. When a small amount of FEC is added to FEMC, co-intercalation does not occur. FEC reduction occurs at a higher potential versus Li/Li+ than FEMC co-intercalation. It also forms a significantly different and thinner SEI containing more carbon, less fluorine, and no apparent FEMC decomposition products.
|
Sep 2024
|
|
B18-Core EXAFS
I10-Beamline for Advanced Dichroism - scattering
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[34243]
Open Access
Abstract: The increased capacity offered by oxygen-redox active cathode materials for rechargeable lithium- and sodium-ion batteries (LIBs and NIBs, respectively) offers a pathway to the next generation of high-gravimetric-capacity cathodes for use in devices, transportation and on the grid. Many of these materials, however, are plagued with voltage fade, voltage hysteresis and O2 loss, the origins of which can be traced back to changes in their electronic and chemical structures on cycling. Developing a detailed understanding of these changes is critical to mitigating these cathodes’ poor performance. In this work, we present an analysis of the redox mechanism of P2–Na0.67[Mg0.28Mn0.72]O2, a layered NIB cathode whose high capacity has previously been attributed to trapped O2 molecules. We examine a variety of charge compensation scenarios, calculate their corresponding densities of states and spectroscopic properties, and systematically compare the results to experimental data: 25Mg and 17O nuclear magnetic resonance (NMR) spectroscopy, operando X-band and ex situ high-frequency electron paramagnetic resonance (EPR), ex situ magnetometry, and O and Mn K-edge X-ray Absorption Spectroscopy (XAS) and X-ray Absorption Near Edge Spectroscopy (XANES). Via a process of elimination, we suggest that the mechanism for O redox in this material is dominated by a process that involves the formation of strongly antiferromagnetic, delocalized Mn–O states which form after Mg2+ migration at high voltages. Our results primarily rely on noninvasive techniques that are vital to understanding the electronic structure of metastable cycled cathode samples.
|
Sep 2024
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
I10-Beamline for Advanced Dichroism - scattering
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Lijin
An
,
Ruomu
Zhang
,
Prvanin N.
Didwal
,
Michael W.
Fraser
,
Leanne A. H.
Jones
,
Conor M. E.
Phelan
,
Namrata
Ramesh
,
Grant
Harris
,
Robert S.
Weatherup
,
Jack E. N.
Swallow
,
Peixi
Cong
,
Andrey
Poletayev
,
Erik
Bjorklund
,
Christophe J.
Sahle
,
Pilar
Ferrer
,
David C.
Grinter
,
Peter
Bencok
,
Shusaku
Hayama
,
Saiful
Islam
,
Robert
House
,
Peter D.
Nellist
,
Robert J.
Green
,
Rebecca J.
Nicholls
Diamond Proposal Number(s):
[33283, 33062, 32010]
Open Access
Abstract: Ni-rich layered oxide cathodes can deliver higher energy density batteries, but uncertainties remain over their charge compensation mechanisms and the degradation processes that limit cycle life. Trapped molecular O2 has been identified within LiNiO2 at high states of charge, as seen for Li-rich cathodes where excess capacity is associated with reversible O-redox. Here we show that bulk redox in LiNiO2 occurs by Ni-O rehybridization, lowering the electron density on O sites, but importantly without the involvement of molecular O2. Instead, trapped O2 is related to degradation at surfaces in contact with the electrolyte, and is accompanied by Ni reduction. O2 is removed on discharge, but excess Ni2+ persists forming a reduced surface layer, associated with impeded Li transport. This implicates the instability of delithiated LiNiO2 in contact with the electrolyte in surface degradation through O2 formation and Ni reduction, highlighting the importance of surface stabilisation strategies in suppressing LNO degradation.
|
Sep 2024
|
|
I15-Extreme Conditions
|
Diamond Proposal Number(s):
[34299]
Open Access
Abstract: The introduction of porosity into ferroelectric ceramics can decrease the effective permittivity, thereby enhancing the open circuit voltage and electrical energy generated by the direct piezoelectric effect. However, the decrease in the longitudinal piezoelectric coefficient (d33) with increasing porosity levels currently limiting the range of pore fractions that can be employed. By introducing aligned lamellar pores into (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3, this paper demonstrates an unusual 22–41% enhancement in the d33 compared to its dense counterpart. This unique combination of high d33 and a low permittivity leads to a significantly improved voltage coefficient (g33), energy harvesting figure of merit (FoM33) and electromechanical coupling coefficient (
). The underlying mechanism for the improved properties is demonstrated to be a synergy between the low defect concentration and high internal polarizing field within the porous lamellar structure. This work provides insights into the design of porous ferroelectrics for applications related to sensors, energy harvesters, and actuators.
|
Aug 2024
|
|
|
James C
Blakesley
,
Ruy Sebastian
Bonilla
,
Marina
Freitag
,
Alex
Ganose
,
Nicola
Gasparini
,
Pascal
Kaienburg
,
George
Koutsourakis
,
Jonathan D.
Major
,
Jenny
Nelson
,
Nakita K.
Noel
,
Bart
Roose
,
Jae Sung
Yun
,
Simon
Aliwell
,
Pietro
Altermatt
,
Tayebeh
Ameri
,
Virgil
Andrei
,
Ardalan
Armin
,
Diego
Bagnis
,
Jenny
Baker
,
Hamish
Beath
,
Mathieu
Bellanger
,
Philippe
Berrouard
,
Jochen
Blumberger
,
Stuart
Boden
,
Hugo
Bronstein
,
Matthew J.
Carnie
,
Chris
Case
,
Fernando A.
Castro
,
Yi-Ming
Chang
,
Elmer
Chao
,
Tracey M.
Clarke
,
Graeme
Cooke
,
Pablo
Docampo
,
Ken
Durose
,
James
Durrant
,
Marina
Filip
,
Richard H.
Friend
,
Jarvist M.
Frost
,
Elizabeth
Gibson
,
Alexander J.
Gillett
,
Pooja
Goddard
,
Severin
Habisreutinger
,
Martin
Heeney
,
Arthur D.
Hendsbee
,
Louise C.
Hirst
,
Saiful
Islam
,
Imalka
Jayawardena
,
Michael
Johnston
,
Matthias
Kauer
,
Jeff
Kettle
,
Ji-Seon
Kim
,
Dan
Lamb
,
David G.
Lidzey
,
Jihoo
Lim
,
Roderick
Mackenzie
,
Nigel
Mason
,
Iain
Mcculloch
,
Keith
Mckenna
,
Sebastian
Meier
,
Paul
Meredith
,
Graham
Morse
,
John
Murphy
,
Chris
Nicklin
,
Paloma
Ortega-Arriaga
,
Thomas
Osterberg
,
Jay
Patel
,
Anthony
Peaker
,
Moritz
Riede
,
Martyn
Rush
,
James
Ryan
,
David O.
Scanlon
,
Peter
Skabara
,
Franky
So
,
Henry J.
Snaith
,
Ludmilla
Steier
,
Jarla
Thiesbrummel
,
Alessandro
Troisi
,
Craig
Underwood
,
Karsten
Walzer
,
Trystan M.
Watson
,
Michael
Walls
,
Aron
Walsh
,
Lucy D.
Whalley
,
Benedict
Winchester
,
Sam
Stranks
,
Robert
Hoye
Open Access
Abstract: Photovoltaics (PVs) are a critical technology for curbing growing levels of anthropogenic greenhouse gas emissions, and meeting increases in future demand for low-carbon electricity. In order to fulfil ambitions for net-zero carbon dioxide equivalent (CO2eq) emissions worldwide, the global cumulative capacity of solar PVs must increase by an order of magnitude from 0.9 TWp in 2021 to 8.5 TWp by 2050 according to the International Renewable Energy Agency, which is considered to be a highly conservative estimate. In 2020, the Henry Royce Institute brought together the UK PV community to discuss the critical technological and infrastructure challenges that need to be overcome to address the vast challenges in accelerating PV deployment. Herein, we examine the key developments in the global community, especially the progress made in the field since this earlier roadmap, bringing together experts primarily from the UK across the breadth of the photovoltaics community. The focus is both on the challenges in improving the efficiency, stability and levelized cost of electricity of current technologies for utility-scale PVs, as well as the fundamental questions in novel technologies that can have a significant impact on emerging markets, such as indoor PVs, space PVs, and agrivoltaics. We discuss challenges in advanced metrology and computational tools, as well as the growing synergies between PVs and solar fuels, and offer a perspective on the environmental sustainability of the PV industry. Through this roadmap, we emphasize promising pathways forward in both the short- and long-term, and for communities working on technologies across a range of maturity levels to learn from each other.
|
Aug 2024
|
|
E01-JEM ARM 200CF
|
Diamond Proposal Number(s):
[32135]
Open Access
Abstract: Understanding Li+ ion diffusion pathways in Li-rich layered transition metal (TM) oxides is crucial for understanding the sluggish kinetics in anionic O2– redox. Although Li diffusion within the alkali layers undergoes a low-barrier octahedral–tetrahedral–octahedral pathway, it is less clear how Li diffuses in and out of the TM layers, particularly given the complex structural rearrangements that take place during the oxidation of O2–. Here, we develop simultaneous electron ptychography and annular dark field imaging methods to unlock the Li migration pathways in Li1.2Ni0.13Mn0.54Co0.13O2 associated with structural changes in the charge–discharge cycle. At the end of TM oxidation and before the high-voltage O oxidation plateau, we show that the Li migrating out of the TM layers occupies the alkali-layer tetrahedral sites on opposite sides of the TM layers, forming Li–Li dumbbell configurations, consistent with the density functional theory calculations. Also occurring are the TM migration and phase transition from O3 to O1 stacking, leading to unstable tetrahedral Li and the absence of Li contrast in imaging. Upon further Li deintercalation to 4.8 V, most of the tetrahedral Li are removed. After discharging to 2 V, we did not identify the reformation of tetrahedral Li but observed permanently migrated TMs at the alkali-layer sites, disfavoring the Li occupying the tetrahedral sites for diffusion. Our findings suggest a landscape of Li diffusion pathways in Li-rich layered oxides and strategies for minimizing the disruption of Li diffusion.
|
Aug 2024
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[32893]
Open Access
Abstract: Potassium-ion batteries (KIBs) are a promising alternative to conventional lithium-ion batteries with reduced critical mineral dependency but accurate three-electrode characterization is hindered by the lack of a suitable reference electrode. Potassium metal is frequently used as a reference electrode out of necessity, but its high reactivity and unstable potential limit its reliability. Here we investigate the K-In and K-Bi alloy systems, synthesize two-phase In-In4K and Bi-Bi2K alloys, and identify Bi-Bi2K as a promising material owing to its stable potential of 1.07 V vs K+/K. We prove the use of Bi-Bi2K as a reference electrode by cycling graphite in three-electrode cells and demonstrate that it results in significantly less electrolyte reduction than potassium metal, facilitating the accurate electrochemical characterization necessary to accelerate KIB development.
|
Aug 2024
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
|
F.
Bassato
,
S.
Mauri
,
L.
Braglia
,
A. Yu.
Petrov
,
E.
Dobovičnik
,
F.
Tavani
,
A.
Tofoni
,
P.
Ferrer
,
D.
Grinter
,
G.
Held
,
P.
D'Angelo
,
P.
Torelli
Diamond Proposal Number(s):
[33111]
Abstract: A-site doped SrTiO3 is considered as a promising substitute for traditional anodic metals in solid oxide fuel cells (SOFCs). In this study, we present the reactivity of La0.2Sr0.25Ca0.45TiO3 (LCSTO), La0.2Sr0.7TiO3 (LSTO), and SrTiO3 (STO) toward H2 by operando ambient pressure NEXAFS spectroscopy and theoretical spectra simulation with FDMNES code. The samples were synthesized by MBE (molecular beam epitaxy), hydrothermal, and modified-Pechini routes. We found that the reducibility of the samples depends not only on their stoichiometry but also on the morphology, which is determined by the synthetic method. The results of these experiments give insight into the reducibility of Ti4+ in perovskites as well as the opportunity to further optimize the synthesis of these materials to obtain the best performance for SOFC applications.
|
Aug 2024
|
|