I11-High Resolution Powder Diffraction
|
Simon J.
Cassidy
,
Michael J.
Pitcher
,
Jared J. K.
Lim
,
Joke
Hadermann
,
Jeremy P.
Allen
,
Graeme W.
Watson
,
Sylvia
Britto
,
Elena J.
Chong
,
David G.
Free
,
Clare P.
Grey
,
Simon J.
Clarke
Diamond Proposal Number(s):
[13284, 18786]
Open Access
Abstract: The chemical accessibility of the CeIV oxidation state enables redox chemistry to be performed on the naturally coinage-metal-deficient phases CeM1–xSO (M = Cu, Ag). A metastable black compound with the PbFCl structure type (space group P4/nmm: a = 3.8396(1) Å, c = 6.607(4) Å, V = 97.40(6) Å3) and a composition approaching CeSO is obtained by deintercalation of Ag from CeAg0.8SO. High-resolution transmission electron microscopy reveals the presence of large defect-free regions in CeSO, but stacking faults are also evident which can be incorporated into a quantitative model to account for the severe peak anisotropy evident in all the high-resolution X-ray and neutron diffractograms of bulk CeSO samples; these suggest that a few percent of residual Ag remains. A straw-colored compound with the filled PbFCl (i.e., ZrSiCuAs- or HfCuSi2-type) structure (space group P4/nmm: a = 3.98171(1) Å, c = 8.70913(5) Å, V = 138.075(1) Å3) and a composition close to LiCeSO, but with small amounts of residual Ag, is obtained by direct reductive lithiation of CeAg0.8SO or by insertion of Li into CeSO using chemical or electrochemical means. Computation of the band structure of pure, stoichiometric CeSO predicts it to be a Ce4+ compound with the 4f-states lying approximately 1 eV above the sulfide-dominated valence band maximum. Accordingly, the effective magnetic moment per Ce ion measured in the CeSO samples is much reduced from the value found for the Ce3+-containing LiCeSO, and the residual paramagnetism corresponds to the Ce3+ ions remaining due to the presence of residual Ag, which presumably reflects the difficulty of stabilizing Ce4+ in the presence of sulfide (S2–). Comparison of the behavior of CeCu0.8SO with that of CeAg0.8SO reveals much slower reaction kinetics associated with the Cu1–xS layers, and this enables intermediate CeCu1–xLixSO phases to be isolated.
|
Feb 2019
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[19876]
Abstract: A heterometallic octanuclear coordination cage [Os4Zn4(Lnap)12]X16 (denoted Os•Zn; X = perchlorate or chloride) has been prepared (Lnap is a bis-bidentate bridging ligand containing two pyrazolyl–pyridine chelating units separated by a 1,5-naphthalenediyl spacer group). The {Os(NN)3}2+ units located at four of the eight vertices of the cube have a long-lived, phosphorescent 3MLCT excited state which is a stronger electron donor than [Ru(bipy)3]2+. The chloride form of Os•Zn is water-soluble and binds in its central cavity the hydrophobic electron-accepting organic guests 1,2,4,5-tetracyanobenzene, 1,4-naphthoquinone and 1-nitronaphthalene, with binding constants in the range 103–104 M–1, resulting in quenching of the phosphorescence arising from the Os(II) units. A crystal structure of an isostructural Co8 cage containing one molecule of 1,2,4,5-tetracyanobenzene as a guest inside the cavity has been determined. Ultrafast transient absorption measurements show formation of a charge-separated Os(III)/guest•– state arising from cage-to-guest photoinduced electron transfer; this state is formed within 13–21 ps, and decays on a time scale of ca. 200 ps. In the presence of a competing guest with a large binding constant (cycloundecanone) which displaces each electron-accepting quencher from the cage cavity, the charge-separated state is no longer observed. Further, a combination of mononuclear {Os(NN)3}2+ model complexes with the same electron-accepting species showed no evidence for formation of charge-separated Os(III)/guest•– states. These two control experiments indicate that the {Os(NN)3}2+ chromophores need to be assembled into the cage structure to bind the electron-accepting guests, and for PET to occur. These results help to pave the way for use of photoactive coordination cages as hosts for photoredox catalysis reactions on bound guests.
|
Jan 2019
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[15777]
Abstract: In the trigonal phase (space group P3121) of the methyl/phenyl-substituted pyridine-bridged bisdithiazolyl PhBPMe, the radical π-stacks form spirals about 31 axes, giving rise to a 3D network of close inter-radical contacts. A high temperature series expansion analysis of its magnetic susceptibility indicates antiferromagnetic exchange energies for the one- and two-step interactions about the 31 spiral, with weak ferromagnetic interactions along the π-stacks. No evidence for antiferromagnetic order was observed above T = 2 K.
|
Dec 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[18786]
Abstract: The structures of two new oxide chalcogenide phases, Sr2CuO2Cu2S2 and Sr2CuO2Cu2Se2, are reported, both of which contain infinite CuO2 planes containing Cu2+ and which have Cu+ ions in the sulfide or selenide layers. Powder neutron diffraction measurements show that Sr2CuO2Cu2Se2 exhibits long-range magnetic ordering with a magnetic structure based on antiferromagnetic interactions between nearest-neighbor Cu2+ ions, leading to a √2a × √2a × 2c expansion of the nuclear cell. The ordered moment of 0.39(6) μB on the Cu2+ ions at 1.7 K is consistent with the value predicted by density functional theory calculations. The compounds are structurally related to the cuprate superconductors and may also be considered as analogues of the parent phases of this class of superconductor such as Sr2CuO2Cl2 or La2CuO4. In the present case, however, the top of the chalcogenide-based valence band is very close to the vacant Cu2+ 3d states of the conduction band, leading to relatively high measured conductivity.
|
Nov 2018
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[10334]
Abstract: The BF4− salts of the complexes shown have been prepared with n = 6, 12, 14, 16, 18. Most of the compounds are low spin at room temperature but exhibit thermal spin crossover on heating. However, the materials with longer chain substituents transform irreversibly into a predominantly high spin form when they are heated to ca. 170 °C. This does not reflect solvent loss or mesophase formation but is accompanied by structural changes, which may arise from conformational motion of the alkyl chains.
|
Oct 2018
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Abstract: Condensation of persilylated nicotinimideamide and isonicotinimideamide with sulfur monochloride affords double salts of the 3-, 4-pyridyl-substituted 1,2,3,5-dithiadiazolylium DTDA cations of the general formula [3-, 4-pyDTDA][Cl][HCl] in which the pyridyl nitrogen serves as a noninnocent base. Reduction of these salts with triphenylantimony followed by deprotonation of the intermediate-protonated radical affords the free base radicals [3-, 4-pyDTDA], the crystal structures of which, along with those of their diselenadiazolyl analogues [3-, 4-pyDSDA], have been characterized by powder or single-crystal X-ray diffraction. The crystal structures consist of “pancake” π-dimers linked head-to-tail into ribbonlike arrays by η2-S2---N(py) intermolecular secondary bonding interactions. Methylation of the persilylated (iso)nicotinimide-amides prior to condensation with sulfur monochloride leads to N-methylated double chloride salts Me[3-, 4-pyDTDA][Cl]2, which can be converted by metathesis into the corresponding triflates Me[3-, 4-pyDTDA][OTf]2 and then reduced to the N-methylated radical triflates Me[3-, 4-pyDTDA][OTf]. The crystal structures of both the N-methylated double triflate and radical triflate salts have been determined by single-crystal X-ray diffraction. The latter consist of trans-cofacial π-dimers strongly ion-paired with triflate anions. Variable temperature magnetic susceptibility measurements on both the neutral and radical ion dimers indicate that they are diamagnetic over the temperature range 2–300 K.
|
Oct 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[13284]
Abstract: Topochemical reduction of the double-perovskite oxide Sr2FeIrO6 under dilute hydrogen leads to the formation of Sr2FeIrO4. This phase consists of ordered infinite sheets of apex-linked Fe2+O4 and Ir2+O4 squares stacked with Sr2+ cations and is the first report of Ir2+ in an extended oxide phase. Plane-wave density functional theory calculations indicate high-spin Fe2+ (d6, S = 2) and low-spin Ir2+ (d7, S = 1/2) configurations for the metals and confirm that both ions have a doubly occupied dz2 orbital, a configuration that is emerging as a consistent feature of all layered oxide phases of this type. The stability and double occupation of dz2 in the Ir2+ ions invites a somewhat unexpected analogy to the extensively studied Ir4+ ion as both ions share a common near-degenerate (dxy/xz/yz)5 valence configuration. On cooling below 115 K, Sr2FeIrO4 enters a magnetically ordered state in which the Ir and Fe sublattices adopt type II antiferromagnetically coupled networks which interpenetrate each other, leading to frustration in the nearest-neighbor Fe–O–Ir couplings, half of which are ferromagnetic and half antiferromagnetic. The spin frustration drives a symmetry-lowering structural distortion in which the four equivalent Ir–O and Fe–O distances of the tetragonal I4/mmm lattice split into two mutually trans pairs in a lattice with monoclinic I112/m symmetry. This strong magneto-lattice coupling arises from the novel local electronic configurations of the Fe2+ and Ir2+ cations and their cation-ordered arrangement in a distorted perovskite lattice.
|
Oct 2018
|
|
I11-High Resolution Powder Diffraction
|
Christos A.
Tzitzeklis
,
Jyoti K.
Gupta
,
Matthew S.
Dyer
,
Troy D.
Manning
,
Michael J.
Pitcher
,
Hongjun J.
Niu
,
Stanislav
Savvin
,
Jonathan
Alaria
,
George R.
Darling
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[12336]
Abstract: It is challenging to achieve p-type doping of zinc oxides (ZnO), which are of interest as transparent conductors in optoelectronics. A ZnO-related ternary compound, SrZnO2, was investigated as a potential host for p-type conductivity. First-principles investigations were used to select from a range of candidate dopants the substitution of Li+ for Zn2+ as a stable, potentially p-type, doping mechanism in SrZnO2. Subsequently, single-phase bulk samples of a new p-type-doped oxide, SrZn1–xLixO2 (0 < x < 0.06), were prepared. The structural, compositional, and physical properties of both the parent SrZnO2 and SrZn1–xLixO2 were experimentally verified. The band gap of SrZnO2 was calculated using HSE06 at 3.80 eV and experimentally measured at 4.27 eV, which confirmed the optical transparency of the material. Powder X-ray diffraction and inductively coupled plasma analysis were combined to show that single-phase ceramic samples can be accessed in the compositional range x < 0.06. A positive Seebeck coefficient of 353(4) μV K–1 for SrZn1–xLixO2, where x = 0.021, confirmed that the compound is a p-type conductor, which is consistent with the pO2 dependence of the electrical conductivity observed in all SrZn1–xLixO2 samples. The conductivity of SrZn1–xLixO2 is up to 15 times greater than that of undoped SrZnO2 (for x = 0.028 σ = 2.53 μS cm–1 at 600 °C and 1 atm of O2).
|
Sep 2018
|
|
I11-High Resolution Powder Diffraction
|
Quinn D.
Gibson
,
Matthew S.
Dyer
,
Craig
Robertson
,
Charlene
Delacotte
,
Troy D.
Manning
,
Michael J.
Pitcher
,
Luke M.
Daniels
,
Marco
Zanella
,
Jonathan
Alaria
,
John B.
Claridge
,
Matthew
Rosseinsky
Diamond Proposal Number(s):
[17193]
Abstract: Here we report a new layered homologous series (Bi2O2Cu2−δSe2)mδ+(Bi2O2Se1−(m/n)δX (m/n)δ)nδ− (X = Cl, Br), composed of the known structural blocks BiOCuSe and Bi2O2Se. These structures are accessed by combining charge-compensating Cu vacancies and (Cl, Br) for Se substitution, in different layers. These new stacking homologoues have properties markedly different from those of the parent materials, and changing the layer stacking affects the properties including the band gap and thermal conductivity.
|
Sep 2018
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[13284]
Abstract: High-resolution synchrotron X-ray and neutron powder diffraction data demonstrate that, in contrast to recent reports, Sr2FeIrO6 adopts an I1̅ symmetry double perovskite structure with an a–b–c– tilting distortion. This distorted structure does not tolerate cation substitution, with low levels of A-site (Ca, Ba, La) or Fe-site (Ga) substitution leading to separation into two phases: a stoichiometric I1̅ phase and a cation-substituted, P21/n symmetry, a–a–c+ distorted double perovskite phase. Magnetization, neutron diffraction, and 57Fe Mössbauer data show that, in common with Sr2FeIrO6, the cation substituted Sr2–xAxFe1–yGayIrO6 phases undergo transitions to type-II antiferromagnetically ordered states at TN ∼ 120 K. However, in contrast to stoichiometric Sr2FeIrO6, cation substituted samples exhibit a further magnetic transition at TA ∼ 220 K, which corresponds to the ordering of Jeff ≠ 0 Ir5+ centers in the cation-substituted, P21/n symmetry, double perovskite phases.
|
Aug 2018
|
|