I05-ARPES
|
Q. Q.
Zhang
,
Y.
Shi
,
K. Y.
Zhai
,
W. X.
Zhao
,
X.
Du
,
J. S.
Zhou
,
X.
Gu
,
R. Z.
Xu
,
Y. D.
Li
,
Y. F.
Guo
,
Z. K.
Liu
,
C.
Chen
,
S.-K.
Mo
,
T. K.
Kim
,
C.
Cacho
,
J. W.
Yu
,
W.
Li
,
Y. L.
Chen
,
J.-H.
Chu
,
L. X.
Yang
Diamond Proposal Number(s):
[22375]
Abstract: EuTe
4
is a van der Waals material exhibiting a charge density wave (CDW) with a large thermal hysteresis in the resistivity and CDW gap. In this paper, we systematically study the electronic structure and transport properties of
EuTe
4
using high-resolution angle-resolved photoemission spectroscopy (ARPES), magnetoresistance (MR) measurements, and scanning tunneling microscopy (STM). We observe a CDW gap of
∼
200
meV
at low temperatures that persists up to 400 K, suggesting that the CDW transition occurs at a much higher temperature. The ARPES intensity near the Fermi level shows large thermal hysteretic behavior, consistent with the resistivity measurement. The hysteresis in the resistivity measurement does not change under a magnetic field up to 7 T, excluding the thermal magnetic hysteretic effect. Instead, the surface topography measured with STM shows surface domains with different CDW trimerization directions, which may be important for the thermal hysteretic behavior. Interestingly, we reveal a large negative MR at low temperatures that can be associated with the canting of magnetically ordered Eu spins. Our results shed light on the understanding of magnetic, transport, and electronic properties of
EuTe
4
.
|
Mar 2023
|
|
|
William
Mccorkindale
,
Kadi L.
Saar
,
Daren
Fearon
,
Melissa
Boby
,
Haim
Barr
,
Amir
Ben-Shmuel
,
Nir
London
,
Frank
Von Delft
,
John D.
Chodera
,
Alpha. A.
Lee
,
The
Covid Moonshot Consortium
Open Access
Abstract: A common challenge in drug design pertains to finding chemical modifications to a ligand that increases its affinity to the target protein. An underutilized advance is the increase in structural biology throughput, which has progressed from an artisanal endeavor to a monthly throughput of hundreds of different ligands against a protein in modern synchrotrons. However, the missing piece is a framework that turns high-throughput crystallography data into predictive models for ligand design. Here, we designed a simple machine learning approach that predicts protein–ligand affinity from experimental structures of diverse ligands against a single protein paired with biochemical measurements. Our key insight is using physics-based energy descriptors to represent protein–ligand complexes and a learning-to-rank approach that infers the relevant differences between binding modes. We ran a high-throughput crystallography campaign against the SARS-CoV-2 main protease (MPro), obtaining parallel measurements of over 200 protein–ligand complexes and their binding activities. This allows us to design one-step library syntheses which improved the potency of two distinct micromolar hits by over 10-fold, arriving at a noncovalent and nonpeptidomimetic inhibitor with 120 nM antiviral efficacy. Crucially, our approach successfully extends ligands to unexplored regions of the binding pocket, executing large and fruitful moves in chemical space with simple chemistry.
|
Mar 2023
|
|
B18-Core EXAFS
|
Abstract: During my PhD research activity, I was involved in the development of smart materials with self-healing functionalities, the possibility to repair the "tissue" that constitutes the electrode, and the electrode/electrolyte interface is the first step towards improve batteries reliability. Concerning the anodic compartment, the active materials subjected to research were black phosphorus-based nanocomposite with carbon and advanced high entropy oxides with rock-salt structure. Subsequently, innovative functional cathode materials were developed for application in lithium-ion batteries that exhibits excellent cycling stability in a wide voltage range and high specific capacities. During the last year I focused on improving lithium metal battery technology, by realizing an enhanced polymer gel electrolyte by means of a Janus separator that showed excellent electrochemical performance, reduced capacity loss and the ability to intercept dendrite growth. A further improvement were Cu-based 3D current collectors as advanced anodes. They showed good capacity, life cycle of more than 300 hours and enhanced safety due to the greater surface area as well as the decrease in local current densities.
|
Mar 2023
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[13775, 18566]
Open Access
Abstract: Alanine racemase (Alr) is a pyridoxal 5′-phosphate-dependent enzyme that catalyzes the racemization of l-alanine to d-alanine. Alr is one of the two targets of the broad-spectrum antibiotic d-cycloserine (DCS), a structural analogue of d-alanine. Despite being an essential component of regimens used to treat multi- and extensively drug-resistant tuberculosis for almost seven decades, resistance to DCS has not been observed in patients. We previously demonstrated that DCS evades resistance due to an ultralow rate of emergence of mutations. Yet, we identified a single polymorphism (converting Asp322 to Asn) in the alr gene, which arose in 8 out of 11 independent variants identified and that confers resistance. Here, we present the crystal structure of the Alr variant D322N in both the free and DCS-inactivated forms and the characterization of its DCS inactivation mechanism by UV–visible and fluorescence spectroscopy. Comparison of these results with those obtained with wild-type Alr reveals the structural basis of the 240-fold reduced inhibition observed in Alr D322N.
|
Mar 2023
|
|
I20-EDE-Energy Dispersive EXAFS (EDE)
|
Diamond Proposal Number(s):
[29667]
Abstract: Single-atoms on carbon-nitrogen supports are considered catalysts for a multitude of reactions. However, doubts remain whether really these species or subnanometer clusters formed under reaction conditions are the active species. In this work, we investigate the dynamics of palladium single-atoms on graphitic carbon nitride during ethylene hydrogenation and H2-D2 exchange. By employing aberration-corrected scanning transmission electron microscopy, x-ray photoelectron spectroscopy and x-ray absorption spectroscopy, we will show that palladium, originally present as single-atoms, agglomerates to clusters at 100 °C in a gas atmosphere that contains both ethylene and hydrogen. This agglomeration goes in hand with the emergence of catalytic activity in both ethylene hydrogenation and H2-D2 exchange, suggesting that clusters, rather than single-atoms, are the active species. The results presented herein highlight the potential of analytics over the course of reaction to identify the active species and provide new insights into the influence of gas atmosphere on metal speciation.
|
Mar 2023
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Diamond Proposal Number(s):
[22687]
Abstract: Designing CO2 methanation catalysts that meet industrial requirements is still challenging. We report Ni-Fe hydrotalcite-derived catalysts with a wide range of Ni and Mg loadings showing that an optimised composition with Ni0.4 gives a very high CO2 conversion rate of 0.37 mmol/gcat/s at 300°C. This catalyst is studied by in-situ APXPS and NEXAFS spectroscopies and compared with the other synthesised samples to obtain new mechanistic insights on methanation catalysts active for low-temperature (300°C) methanation, which is an industrial requirement. Under methanation conditions, in-situ investigations revealed the presence of metallic Ni sites and low nuclearity Ni-Fe species at
(Ni loading) = 21.2 mol%. These sites are oxidised on the low Ni-loaded catalyst (
= 9.2 mol%). The best CO2 conversion rate and CH4 selectivity are shown at intermediate
(21.2 mol%), in the presence of Mg. These superior performances are related to the high metallic surface area, dispersion, and optimal density of basic sites. The
(turnover frequency of CO2 conversion) increases exponentially with the fractional density of basic to metallic sites (
) from 1.1 s-1 (
= 29.2 mol%) to 9.1 s-1 (
= 7.6 mol%). It follows the opposite trend of the CO2 conversion rate. In-situ DRIFTS data under methanation conditions evidence that the
at high
is related to the presence of a formate route which is not predominant at low
(high
). A synergistic interplay of basic and metallic sites is present. This contribution provides a rationale for designing industrially competitive CO2 methanation catalysts with high catalytic activity while maintaining low Ni loading.
|
Mar 2023
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[29217]
Open Access
Abstract: Metal-organic frameworks (MOFs) are well known for their ability to adsorb various gases. The use of MOFs for the storage and release of biologically active gases, particularly nitric oxide (NO) and carbon monoxide (CO), has been a subject of interest. To elucidate the binding mechanisms and geometry of these gases, an in situ single crystal X-ray diffraction (scXRD) study using synchrotron radiation at Diamond Light Source has been performed on a set of MOFs that display promising gas adsorption properties. NO and CO, were introduced into activated Ni-CPO-27 and the related Co-4,6-dihydroxyisophthalate (Co-4,6-dhip). Both MOFs show strong binding affinity towards CO and NO, however CO suffers more from competitive co-adsorption of water. Additionally, we show that morphology can play an important role in the ease of dehydration for these two systems.
|
Mar 2023
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[172122, 23269]
Open Access
Abstract: KPC-2 (Klebsiella pneumoniae carbapenemase-2) is a globally disseminated serine-β-lactamase (SBL) responsible for extensive β-lactam antibiotic resistance in Gram-negative pathogens. SBLs inactivate β-lactams via a mechanism involving a hydrolytically labile covalent acyl-enzyme intermediate. Carbapenems, the most potent β-lactams, evade the activity of many SBLs by forming long-lived inhibitory acyl-enzymes; however, carbapenemases such as KPC-2 efficiently deacylate carbapenem acyl-enzymes. We present high-resolution (1.25–1.4 Å) crystal structures of KPC-2 acyl-enzymes with representative penicillins (ampicillin), cephalosporins (cefalothin), and carbapenems (imipenem, meropenem, and ertapenem) obtained utilizing an isosteric deacylation-deficient mutant (E166Q). The mobility of the Ω-loop (residues 165–170) negatively correlates with antibiotic turnover rates (kcat), highlighting the role of this region in positioning catalytic residues for efficient hydrolysis of different β-lactams. Carbapenem-derived acyl-enzyme structures reveal the predominance of the Δ1-(2R) imine rather than the Δ2 enamine tautomer. Quantum mechanics/molecular mechanics molecular dynamics simulations of KPC-2:meropenem acyl-enzyme deacylation used an adaptive string method to differentiate the reactivity of the two isomers. These identify the Δ1-(2R) isomer as having a significantly (7 kcal/mol) higher barrier than the Δ2 tautomer for the (rate-determining) formation of the tetrahedral deacylation intermediate. Deacylation is therefore likely to proceed predominantly from the Δ2, rather than the Δ1-(2R) acyl-enzyme, facilitated by tautomer-specific differences in hydrogen-bonding networks involving the carbapenem C-3 carboxylate and the deacylating water and stabilization by protonated N-4, accumulating a negative charge on the Δ2 enamine-derived oxyanion. Taken together, our data show how the flexible Ω-loop helps confer broad-spectrum activity upon KPC-2, while carbapenemase activity stems from efficient deacylation of the Δ2-enamine acyl-enzyme tautomer.
|
Mar 2023
|
|
I10-Beamline for Advanced Dichroism
|
Diamond Proposal Number(s):
[16141]
Open Access
Abstract: Owing to the unique chemical and electronic properties arising from 3d-electrons, substitution with transition metal ions is one of the key routes for engineering new functionalities into materials. While this approach has been used extensively in complex metal oxide perovskites, metal halide perovskites have largely resisted facile isovalent substitution. In this work, it is demonstrated that the substitution of Co2+ into the lattice of methylammonium lead triiodide imparts magnetic behavior to the material while maintaining photovoltaic performance at low concentrations. In addition to comprehensively characterizing its magnetic properties, the Co2+ ions themselves are utilized as probes to sense the local electronic environment of Pb in the perovskite, thereby revealing the nature of their incorporation into the material. A comprehensive understanding of the effect of transition metal incorporation is provided, thereby opening the substitution gateway for developing novel functional perovskite materials and devices for future technologies.
|
Mar 2023
|
|
I07-Surface & interface diffraction
|
Yuqi
Sun
,
Lishuang
Ge
,
Linjie
Dai
,
Changsoon
Cho
,
Jordi
Ferrer Orri
,
Kangyu
Ji
,
Szymon J.
Zelewski
,
Yun
Liu
,
Alessandro J.
Mirabelli
,
Youcheng
Zhang
,
Jun-Yu
Huang
,
Yusong
Wang
,
Ke
Gong
,
May Ching
Lai
,
Lu
Zhang
,
Dan
Yang
,
Jiudong
Lin
,
Elizabeth M.
Tennyson
,
Caterina
Ducati
,
Samuel D.
Stranks
,
Lin-Song
Cui
,
Neil C.
Greenham
Diamond Proposal Number(s):
[30575]
Abstract: Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm−2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm−2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm−2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm−2, along with a high radiance of more than 3,200 W s−1 m−2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s−1 m−2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.
|
Mar 2023
|
|