I12-JEEP: Joint Engineering, Environmental and Processing
|
Donal P.
Finegan
,
Julia
Billman
,
Jacob
Darst
,
Peter
Hughes
,
Jesus
Trillo
,
Matt
Sharp
,
Alex
Benson
,
Martin
Pham
,
Inez
Kesuma
,
Mark
Buckwell
,
Hamish T.
Reid
,
Charlie
Kirchner-Burles
,
Matilda
Fransson
,
David
Petrushenko
,
Thomas M. M.
Heenan
,
Rhodri
Jervis
,
Rhodri
Owen
,
Drasti
Patel
,
Ludovic
Broche
,
Alexander
Rack
,
Oxana
Magdysyuk
,
Matt
Keyser
,
William
Walker
,
Paul
Shearing
,
Eric
Darcy
Diamond Proposal Number(s):
[24112, 20903, 17641]
Open Access
Abstract: The thermal response of Li-ion cells can greatly vary for identical cell designs tested under identical conditions, the distribution of which is costly to fully characterize experimentally. The open-source Battery Failure Databank presented here contains robust, high-quality data from hundreds of abuse tests spanning numerous commercial cell designs and testing conditions. Data was gathered using a fractional thermal runaway calorimeter and contains the fractional breakdown of heat and mass that was ejected, as well as high-speed synchrotron radiography of the internal dynamic response of cells during thermal runaway. The distribution of thermal output, mass ejection, and internal response of commercial cells are compared for different abuse-test conditions, which when normalized on a per amp-hour basis show a strong positive correlation between heat output from cells, the fraction of mass ejected from the cells, their energy- and power-density. Ejected mass was shown to contain 10 × more heat per gram than non-ejected mass. The causes of ‘outlier’ thermal and ejection responses i.e., extreme cases, are elucidated by high-speed radiography which showed how occurrences such as vent clogging can create more hazardous conditions. High-speed radiography also demonstrated how the time-resolved interplay of thermal runaway propagation and mass ejection influences the total heat generated.
|
Mar 2024
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Matthew A.
Wright
,
T. Wesley
Surta
,
Jae A.
Evans
,
Jungwoo
Lim
,
Hongil
Jo
,
Cara J.
Hawkins
,
Mounib
Bahri
,
Luke M.
Daniels
,
Ruiyong
Chen
,
Marco
Zanella
,
Luciana G.
Chagas
,
James
Cookson
,
Paul
Collier
,
Giannantonio
Cibin
,
Alan V.
Chadwick
,
Matthew S.
Dyer
,
Nigel D.
Browning
,
John B.
Claridge
,
Laurence J.
Hardwick
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[31578]
Open Access
Abstract: Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100 mAh g-1 is achieved with fast Mg2+ diffusion of 7.2[[EQUATION]]10-11-4[[EQUATION]]10-14 cm2s-1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2- site; enabled by reversible cleavage of S–S bonds, identified by X-ray photoelectron and X-ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory calculations and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred.
|
Mar 2024
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Mikkel
Juelsholt
,
Jun
Chen
,
Miguel A.
Pérez-Osorio
,
Gregory
Rees
,
Sofia
De Sousa Coutinho
,
Helen E.
Maynard-Casely
,
Jue
Liu
,
Michelle
Everett
,
Stefano
Agrestini
,
Mirian
Garcia-Fernandez
,
Ke-Jin
Zhou
,
Robert A.
House
,
Peter G.
Bruce
Diamond Proposal Number(s):
[27764, 29028]
Open Access
Abstract: LiNiO2 remains a critical archetypal material for high energy density Li-ion batteries, forming the basis of Ni-rich cathodes in use today. Nevertheless, there are still uncertainties surrounding the charging mechanism at high states of charge and the potential role of oxygen redox. We show that oxidation of O2− across the 4.2 V vs. Li+/Li plateau forms O2 trapped in the particles and is accompanied by the formation of 8% Ni vacancies on the transition metal sites of previously fully dense transition metal layers. Such Ni vacancy formation on charging activates O-redox by generating non-bonding O 2p orbitals and is necessary to form vacancy clusters to accommodate O2 in the particles. Ni accumulates at and near the surface of the particles on charging, forming a Ni-rich shell approximately 5 nm thick; enhanced by loss of O2 from the surface, the resulting shell composition is Ni2.3+1.75O2. The overall Ni oxidation state of the particles measured by XAS in fluorescence yield mode after charging across the plateau to 4.3 V vs. Li+/Li is approximately +3.8; however, taking account of the shell thickness and the shell Ni oxidation state of +2.3, this indicates a Ni oxidation state in the core closer to +4 for compositions beyond the plateau.
|
Mar 2024
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[30403, 33297]
Abstract: PEO-LiX solid polymer electrolyte (SPE) with the addition of Li6.4La3Zr1.4Ta0.6O12 (LLZTO) fillers is considered as a promising solid-state electrolyte for solid-state Li-ion batteries. However, the developments of the SPE have caused additional challenges, such as poor contact interface and SPE/Li interface stability during cycling, which always lead to potentially catastrophic battery failure. The main problem is that the real impact of LLZTO fillers on the interfacial properties between SPE and Li metal is still unclear. Herein, we combined the electrochemical measurement and in situ synchrotron-based X-ray absorption near-edge structure (XANES) imaging technology to study the role of LLZTO fillers in directing SPE/Li interface electrochemical performance. In situ XRF-XANES mapping during cycling showed that addition of an appropriate amount of LLZTO fillers (50 wt %) can improve the interfacial contact and stability between SPE and Li metal without reacting with the PEO and Li salts. Additionally, it also demonstrated the beneficial effect of LLZTO particles for suppressing the interface reactions between the Li metal and PEO-LiTFSI SPE and further inhibiting Li-metal dendrite growth. The Li|LiFePO4 batteries deliver long cycling for over 700 cycles with a low-capacity fade rate of 0.08% per cycle at a rate of 0.3C, revealing tremendous potential in promoting the large-scale application of future solid-state Li-ion batteries.
|
Mar 2024
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Diamond Proposal Number(s):
[25785]
Open Access
Abstract: Oxygen redox cathodes, such as Li1.2Ni0.13Co0.13Mn0.54O2, deliver higher energy densities than those based on transition metal redox alone. However, they commonly exhibit voltage fade, a gradually diminishing discharge voltage on extended cycling. Recent research has shown that, on the first charge, oxidation of O2− ions forms O2 molecules trapped in nano-sized voids within the structure, which can be fully reduced to O2− on the subsequent discharge. Here we show that the loss of O-redox capacity on cycling and therefore voltage fade arises from a combination of a reduction in the reversibility of the O2−/O2 redox process and O2 loss. The closed voids that trap O2 grow on cycling, rendering more of the trapped O2 electrochemically inactive. The size and density of voids leads to cracking of the particles and open voids at the surfaces, releasing O2. Our findings implicate the thermodynamic driving force to form O2 as the root cause of transition metal migration, void formation and consequently voltage fade in Li-rich cathodes.
|
Mar 2024
|
|
B18-Core EXAFS
|
Benjamin
Moss
,
Katrine L.
Svane
,
David
Nieto-Castro
,
Reshma R.
Rao
,
Soren B.
Scott
,
Cindy
Tseng
,
Michael
Sachs
,
Anuj
Pennathur
,
Caiwu
Liang
,
Louise I.
Oldham
,
Eva
Mazzolini
,
Lole
Jurado
,
Gopinathan
Sankar
,
Stephen
Parry
,
Veronica
Celorrio
,
Jahan M.
Dawlaty
,
Jan
Rossmeisl
,
Jose Ramon
Galán-Mascarós
,
Ifan E. L.
Stephens
,
James R.
Durrant
Diamond Proposal Number(s):
[30663]
Open Access
Abstract: A barrier to understanding the factors driving catalysis in the oxygen evolution reaction (OER) is understanding multiple overlapping redox transitions in the OER catalysts. The complexity of these transitions obscure the relationship between the coverage of adsorbates and OER kinetics, leading to an experimental challenge in measuring activity descriptors, such as binding energies, as well as adsorbate interactions, which may destabilize intermediates and modulate their binding energies. Herein, we utilize a newly designed optical spectroelectrochemistry system to measure these phenomena in order to contrast the behavior of two electrocatalysts, cobalt oxyhydroxide (CoOOH) and cobalt–iron hexacyanoferrate (cobalt–iron Prussian blue, CoFe-PB). Three distinct optical spectra are observed in each catalyst, corresponding to three separate redox transitions, the last of which we show to be active for the OER using time-resolved spectroscopy and electrochemical mass spectroscopy. By combining predictions from density functional theory with parameters obtained from electroadsorption isotherms, we demonstrate that a destabilization of catalytic intermediates occurs with increasing coverage. In CoOOH, a strong (∼0.34 eV/monolayer) destabilization of a strongly bound catalytic intermediate is observed, leading to a potential offset between the accumulation of the intermediate and measurable O2 evolution. We contrast these data to CoFe-PB, where catalytic intermediate generation and O2 evolution onset coincide due to weaker binding and destabilization (∼0.19 eV/monolayer). By considering a correlation between activation energy and binding strength, we suggest that such adsorbate driven destabilization may account for a significant fraction of the observed OER catalytic activity in both materials. Finally, we disentangle the effects of adsorbate interactions on state coverages and kinetics to show how adsorbate interactions determine the observed Tafel slopes. Crucially, the case of CoFe-PB shows that, even where interactions are weaker, adsorption remains non-Nernstian, which strongly influences the observed Tafel slope.
|
Mar 2024
|
|
E01-JEM ARM 200CF
E02-JEM ARM 300CF
I11-High Resolution Powder Diffraction
I15-1-X-ray Pair Distribution Function (XPDF)
I15-Extreme Conditions
|
Abstract: Nanostructured and disordered materials have been shown to possess improved and emergent properties which are distinct from the bulk material. Top-down and bottom- up nanostructuring methods of alkali-niobates have been explored in this study. The synthesis of three nanostructured phases is demonstrated, two of which are 2D nano- structured materials showing turbostatic disorder based on the layered structure of KNb3 O8 and K4 Nb6 O17 . The third nanostructured niobate shows a very high de- gree of disorder, posing challenges in characterisation, however was determined to be a corner sharing niobate structure. Solid state structural analysis was carried out us- ing x-ray diffraction (XRD), x-ray pair distribution function (XPDF), microscopy and Raman spectroscopy.
Alkaline-niobates are electronically active, this has mostly been investigated as a lithium-ion anode material, however little is known about their capacbilities as a sodium-ion battery anode material. Due to increasing supply chain risks and our ever depleting lithium resource it is imperative global energy storage systems are diversified to meet the energy demands of our growing populations. Sodium-ion batteries have potential cost, safety and resource-availability advantages over lithium-ion batteries, albeit generally with some loss of energy density, which is not a concern for staitionary battery applications. KNb3O8, HNb3O8 and the three aforementioned nanostructured niobates were studied within sodium half cell, coin cells by galvanostatic (dis)charge and cyclic voltammetry (CV). HNb3O8 showed the highest capacity (122.0 mAhg-1 after 20 cycles at 3mAg-1) consistent with previous work, theorised to be due to the small interlayer ion H+. The nanostructured materials showed poorer capacities, however the 2D nanomaterials of KNb3O8 and K4Nb6O17 showed almost no capacity loss when comparing the 20th cycle capacity at rates of 10 mAhg-1 and 40 mAhg-1, whilst crystalline KNb3O8 showed a capacity loss of over 50 %. Most interestingly, at a rate of 3 mAhg-1, coin cells made from KNb3O8:C:CMC (7:1.5:1.5) anode coatings were found to show capacity increase from 161 mAhg-1 (second cycle) to 200 mAhg-1 (15th cycle), an increase of around 25 %. To tbe best of our knowledge, a new phenomena which has not been previously reported. The same coating made with PVDF (Poly(vinylidene fluoride)) binder instead of CMC (sodium carboxymethyl cellulose) binder did not exhibit this behaviour, therefore, this increase in capcity is most likely related to the superior stability of CMC over PVDF in this system. These results indicate the careful choice of nanostructure and electrode-level fabrication methods (e.g. binder) have the potential to optimise capacity, capacity retention and power capabilities.
|
Mar 2024
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[25932, 30031]
Open Access
Abstract: The application of high-temperature proton exchange membrane fuel cells (HT-PEMFCs) addresses challenges in water management, fuel purity, and overheating under high current density. However, phosphoric acid (PA) migration hinders their development. This study uses synchrotron-based X-ray fluorescence spectroscopy to investigate PA and catalyst migration. Interventions with single-layer graphene and electrochemically exfoliated graphene oxide improve performance and durability. X-ray absorption spectroscopy provides insights into relevant mechanisms, advancing understanding of membrane electrode assembly preparation and the intricate influences of PA and catalyst migration on performance and durability in HT-PEMFCs.
|
Mar 2024
|
|
B07-B1-Versatile Soft X-ray beamline: High Throughput ES1
|
Conor M. E.
Phelan
,
Erik
Bjorklund
,
Jasper
Singh
,
Michael
Fraser
,
Prvanin N.
Didwal
,
Gregory J.
Rees
,
Zachary
Ruff
,
Pilar
Ferrer
,
David C.
Grinter
,
Clare P.
Grey
,
Robert S
Weatherup
Diamond Proposal Number(s):
[33283]
Open Access
Abstract: The cathode–electrolyte interphase (CEI) in Li-ion batteries plays a key role in suppressing undesired side reactions while facilitating Li-ion transport. Ni-rich layered cathode materials offer improved energy densities, but their high interfacial reactivities can negatively impact the cycle life and rate performance. Here we investigate the role of electrolyte salt concentration, specifically LiPF6 (0.5–5 m), in altering the interfacial reactivity of charged LiN0.8Mn0.1Co0.1O2 (NMC811) cathodes in standard carbonate-based electrolytes (EC/EMC vol %/vol % 3:7). Extended potential holds of NMC811/Li4Ti5O12 (LTO) cells reveal that the parasitic electrolyte oxidation currents observed are strongly dependent on the electrolyte salt concentration. X-ray photoelectron and absorption spectroscopy (XPS/XAS) reveal that a thicker LixPOyFz-/LiF-rich CEI is formed in the higher concentration electrolytes. This suppresses reactions with solvent molecules resulting in a thinner, or less-dense, reduced surface layer (RSL) with lower charge transfer resistance and lower oxidation currents at high potentials. The thicker CEI also limits access of acidic species to the RSL suppressing transition-metal dissolution into the electrolyte, as confirmed by nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES). This provides insight into the main degradation processes occurring at Ni-rich cathode interfaces in contact with carbonate-based electrolytes and how electrolyte formulation can help to mitigate these.
|
Mar 2024
|
|
I11-High Resolution Powder Diffraction
I19-Small Molecule Single Crystal Diffraction
|
Guopeng
Han
,
Andrij
Vasylenko
,
Luke M.
Daniels
,
Chris M.
Collins
,
Lucia
Corti
,
Ruiyong
Chen
,
Hongjun
Niu
,
Troy D.
Manning
,
Dmytro
Antypov
,
Matthew S.
Dyer
,
Jungwoo
Lim
,
Marco
Zanella
,
Manel
Sonni
,
Mounib
Bahri
,
Hongil
Jo
,
Yun
Dang
,
Craig M.
Robertson
,
Frédéric
Blanc
,
Laurence J.
Hardwick
,
Nigel D.
Browning
,
John B.
Claridge
,
Matthew J.
Rosseinsky
Diamond Proposal Number(s):
[30461, 31578]
Abstract: Fast cation transport in solids underpins energy storage. Materials design has focused on structures that can define transport pathways with minimal cation coordination change, restricting attention to a small part of chemical space. Motivated by the greater structural diversity of binary intermetallics than that of the metallic elements, we used two anions to build a pathway for three-dimensional superionic lithium ion conductivity that exploits multiple cation coordination environments. Li7Si2S7I is a pure lithium ion conductor created by an ordering of sulphide and iodide that combines elements of hexagonal and cubic close-packing analogously to the structure of NiZr. The resulting diverse network of lithium positions with distinct geometries and anion coordination chemistries affords low barriers to transport, opening a large structural space for high cation conductivity.
|
Feb 2024
|
|