B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
B18-Core EXAFS
|
Huihuang
Fang
,
Simson
Wu
,
Tugce
Ayvali
,
Jianwei
Zheng
,
Joshua
Fellowes
,
Ping-Luen
Ho
,
Kwan Chee
Leung
,
Alexander
Large
,
Georg
Held
,
Ryuichi
Kato
,
Kazu
Suenaga
,
Yves Ira A.
Reyes
,
Ho Viet
Thang
,
Hsin-Yi Tiffany
Chen
,
Shik Chi Edman
Tsang
Open Access
Abstract: Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.
|
Feb 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[14239]
Open Access
Abstract: Sulfur-deficient SnS thin films for sodium-ion battery anode application are prepared using aerosol-assisted chemical vapor deposition. Growth directly onto the metal foil current collector forms sulfur-deficient SnS microrod structures via a vapor–liquid–solid growth mechanism, with 92 nm average SnS crystallite size and an 800 nm film thickness. The sulfur deficiency is demonstrated with energy-dispersive X-ray analysis, powder X-ray diffraction, and X-ray absorption near-edge structure analyses. This sulfur-deficient SnS material demonstrates a very high capacity in sodium half cells. The first reduction scan at a specific current of 150 mA g−1 shows a capacity of 1084 mAh g−1. At the 50th cycle the specific capacity is 638 mAh g−1 for reduction and 593 mAh g−1 for oxidation. This capacity is demonstrated for tin sulfide itself without the need for a nanostructured carbon support, unlike previous high capacity SnS anodes in the literature. Both the capacity and ex situ characterization experiments indicate a conversion reaction producing tin, followed by alloying with sodium during reduction, and that both of these processes are reversible during oxidation.
|
Feb 2023
|
|
I06-Nanoscience
|
Diamond Proposal Number(s):
[14135]
Abstract: The size of the orbital moment in
Fe
3
O
4
has been the subject of a long-standing and contentious debate. In this paper, we make use of ferromagnetic resonance (FMR) spectroscopy and x-ray magnetic circular dichroism (XMCD) to provide complementary determinations of the size of the orbital moment in “bulklike” epitaxial
Fe
3
O
4
films grown on yttria-stabilized zirconia (111) substrates. Annealing the 100 nm as-grown films to
1100
∘
C
in a reducing atmosphere improves the stoichiometry and microstructure of the films, allowing for bulklike properties to be recovered as evidenced by x-ray diffraction and vibrating sample magnetometry. In addition, in-plane angular FMR spectra exhibit a crossover from a fourfold symmetry to the expected sixfold symmetry of the (111) surface, together with an anomalous peak in the FMR linewidth at
∼
10
GHz; this is indicative of low Gilbert damping in combination with two-magnon scattering. For the bulklike annealed sample, a spectroscopic splitting factor
g
≈
2.18
is obtained using both FMR and XMCD techniques, providing evidence for the presence of a finite orbital moment in
Fe
3
O
4
.
|
Feb 2023
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
|
Elan D. R.
Mistry
,
Daphné
Lubert-Perquel
,
Irena
Nevjestic
,
Giuseppe
Mallia
,
Pilar
Ferrer
,
Kanak
Roy
,
Georg
Held
,
Tian
Tian
,
Nicholas M.
Harrison
,
Sandrine
Heutz
,
Camille
Petit
Diamond Proposal Number(s):
[26511]
Open Access
Abstract: A family of boron nitride (BN)-based photocatalysts for solar fuel syntheses have recently emerged. Studies have shown that oxygen doping, leading to boron oxynitride (BNO), can extend light absorption to the visible range. However, the fundamental question surrounding the origin of enhanced light harvesting and the role of specific chemical states of oxygen in BNO photochemistry remains unanswered. Here, using an integrated experimental and first-principles-based computational approach, we demonstrate that paramagnetic isolated OB3 states are paramount to inducing prominent red-shifted light absorption. Conversely, we highlight the diamagnetic nature of O–B–O states, which are shown to cause undesired larger band gaps and impaired photochemistry. This study elucidates the importance of paramagnetism in BNO semiconductors and provides fundamental insight into its photophysics. The work herein paves the way for tailoring of its optoelectronic and photochemical properties for solar fuel synthesis.
|
Feb 2023
|
|
B18-Core EXAFS
|
Yunpeng
Zuo
,
Nikolaos
Antonatos
,
Lukáš
Děkanovský
,
Jan
Luxa
,
Joshua D.
Elliott
,
Diego
Gianolio
,
Jiří
Šturala
,
Fabrizio
Guzzetta
,
Stefanos
Mourdikoudis
,
Jakub
Regner
,
Roman
Málek
,
Zdenek
Sofer
Diamond Proposal Number(s):
[31795]
Abstract: As a fascinating innovative class of effective catalysts
for hydrogen evolution reaction (HER), transition-metal tellurides
have emerged as attractive materials, but they are still suffering
from their intrinsic activity for practical applications. Defect
engineering constitutes a promising strategy to optimize the
electronic configuration of the catalyst and further improve the
HER activity. Herein, we present the successful fabrication of
PdTe2-based catalysts with three different types of vacancies (dPdTex), including single Pd, Te defect site, and double Te defect
sites, by using a two-step method. The obtained d-PdTex
demonstrated a remarkable HER activity with an overpotential of
76 mV at 10 mA cm−2 without iR compensation, which is far lower
than that of bulk PdTe2 (259 mV). The procedure followed in this
work may be extended to generate defect sites in a range of
different two-dimensional materials, thus further expanding their potential application fields.
|
Feb 2023
|
|
E01-JEM ARM 200CF
E02-JEM ARM 300CF
I14-Hard X-ray Nanoprobe
I18-Microfocus Spectroscopy
|
Open Access
Abstract: Phyllosilicate minerals in the carbonaceous chondrites provide insights into processes in primitive parent bodies of the early Solar System. It is widely agreed that the CM- and CI-type carbonaceous chondrites underwent aqueous alteration on their parent bodies, resulting in phyllosilicate-rich matrices, where the dominant mineral phase is serpentine. There are many previous studies investigating phyllosilicate structure in carbonaceous chondrites, however, the presence of sulfur in these minerals and its effect on crystal lattice structure has not been studied in detail. We are investigating how the presence of sulfur (up to ≃9-10 wt% SO3) in serpentine phyllosilicate regions effects basal lattice spacing measurements of serpentine-like minerals in CM- and CI-type chondritic and related asteroidal material.
Four specimens are being studied for this work: Winchcombe and Aguas Zarcas (CM-type), and Ryugu samples (A0058-C2001-08, A0104-00200502 and A0104-01700602) from Hayabusa2 and Ivuna (CI-type). All samples are TEM wafers. We have used a multi-technique approach to study the samples, with the E01 JEOL ARM200CF and E02 JEOL ARM300CF electron microscopes at the ePSIC facility at Diamond Light Source in Harwell, UK. EDS compositional data has been collected using the E01 microscope, whilst HRTEM and HAADF imaging data has been collected at E02. At E02 we are also applying a new 4D-STEM nano-diffraction technique in order to collect lattice spacing data to correlate with our other HRTEM results. Fe-K XANES analyses on Winchcombe and Ryugu have been carried out using the I18 microprobe and I14 hard x-ray nanoprobe respectively, also at Diamond Light Source, to constrain Fe3+/ΣFe. By combining these techniques we aim to better understand the physical and chemical structure of serpentine-like minerals in carbonaceous chondrites.
Initial analyses have shown that sulfur presence in carbonaceous chondrite phyllosilicates reduces the basal lattice spacings of serpentine-like minerals. In these sulfur-bearing regions, we have been finding lattice spacings in the range ~0.60-0.74nm for the CM-type chondrites. For the CI-type, these range between ~0.65-0.76nm. Differences in the reduced lattice spacing ranges are likely related to the redox state of the sulfur. In Ryugu and other carbonaceous chondrites the sulfur appears reduced; its content in serpentine is low and we see FeS grains. Comparatively, in Winchcombe (and others) more of the sulfur seems to be in the serpentine structure.
We can conclude that in serpentine-like minerals, the presence of sulfur appears to reduce basal lattice spacing values compared to the expected d-spacing value of 0.70nm for serpentine. Possible reasons for this include further investigations into the valency of the sulfur ions, the bonding environment within serpentine layers, and the location of sulfur in either the octa- or tetrahedral lattice sites.
|
Feb 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[17782]
Open Access
Abstract: Portland cement-based grouts used for radioactive waste immobilisation contain a Ca- and Si-rich binder phase, known as calcium–silicate–hydrate (C–S–H). Depending on the blend of cement used, the Ca/Si ratio can vary considerably. A range of C–S–H minerals with Ca/Si ratios from 0.6 to 1.6 were synthesised and contacted with aqueous U(VI) at 0.5 mM and 10 mM concentrations. Solid-state 29Si MAS-NMR spectroscopy was applied to probe the Si coordination environment in U(VI)-contacted C–S–H minerals and, in conjunction with U LIII-edge X-ray absorption spectroscopy analysis, inferences of the fate of U(VI) in these systems were made. At moderate or high Ca/Si ratios, uranophane-type uranyl silicates or Ca-uranates dominated, while at the lowest Ca/Si ratios, the formation of a Ca-bearing uranyl silicate mineral, similar to haiweeite (Ca[(UO2)2Si5O12(OH)2]·3H2O) or Ca-bearing weeksite (Ca2(UO2)2Si6O15·10H2O) was identified. This study highlights the influence of Ca/Si ratio on uranyl sequestration, of interest in the development of post-closure safety models for U-bearing radioactive waste disposal.
|
Feb 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[19850]
Open Access
Abstract: Co3O4 nanoparticles were supported on different TiO2 polymorphs, namely, rutile, anatase, and a 15[thin space (1/6-em)]:[thin space (1/6-em)]85 mixture of rutile and anatase (also known as P25), via incipient wetness impregnation. The Co3O4/TiO2 catalysts were evaluated in the preferential oxidation of CO (CO-PrOx) in a H2-rich gas environment and characterised in situ using PXRD and magnetometry. Our results show that supporting Co3O4 on P25 resulted in better catalytic performance, that is, a higher maximum CO conversion to CO2 of 72.7% at 200 °C was achieved than on rutile (60.7%) and anatase (51.5%). However, the degree of reduction (DoR) of Co3O4 to Co0 was highest on P25 (91.9% at 450 °C), with no CoTiO3 detected in the spent catalyst. The DoR of Co3O4 was lowest on anatase (76.4%), with the presence of TixOy-encapsulated CoOx nanoparticles and bulk CoTiO3 (13.8%) also confirmed in the spent catalyst. Relatively low amounts of CoTiO3 (8.9%) were detected in the spent rutile-supported catalyst, while a higher DoR (85.9%) was reached under reaction conditions. The Co0 nanoparticles formed on P25 and rutile existed in the fcc and hcp crystal phases, while only fcc Co0 was detected on anatase. Furthermore, undesired CH4 formation took place over the Co0 present in the P25- and rutile-supported catalysts, while CH4 was not formed over the Co0 on anatase possibly due to encapsulation by TixOy species. For the first time, this study revealed the influence of different TiO2 polymorphs (used as catalyst supports) on the chemical and crystal phase transformations of Co3O4, which in turn affect its activity and selectivity during CO-PrOx.
|
Feb 2023
|
|
I19-Small Molecule Single Crystal Diffraction
|
Open Access
Abstract: Lithium-rich oxides are attracting intense interest as the next generation cathode materials for lithium-ion batteries due to their high theoretical capacity. Nevertheless, these materials suffer from a number of shortcomings, such as oxygen loss at high voltage, large hysteresis and poor rate capability. In this work, we show that through a dual cation doping strategy replacing Ti with Mo and Mg, the disordered rocksalt (DRS) Li1.2Ni0.4Ti0.4O2 is transformed into a new cation ordered layered phase Li1.2Ni0.4Mo0.2Mg0.2O2, with the high valence dopant Mo6+ on the (0,0,0) site. Li1.2Ni0.4Mo0.2Mg0.2O2 showed improved performance compared to that of the similarly prepared DRS Li1.2Ni0.4Ti0.4O2 material (~190 mAhg-1 vs ~105 mAhg-1 after 10 cycles, respectively). The characteristics of the electrochemical process were studied using ex situ XRD and XAS, which indicated the involvement of both Ni and Mo redox during the cycling as well as the electrochemical instability of the layered phase which changes to a disordered rocksalt phase on cycling.
|
Jan 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[19850, 29271]
Abstract: Plasmonic catalysis has revealed improved product yield and selectivity in various chemical transformation reactions. In this report, we have investigated the effect of tertiary amine (-NR3) functionalization on the surface of hierarchically-porous zeotype (HP-AlPO-5) materials to enhance the plasmon-mediated catalysis, utilizing a combination of the plasmonic antenna (Au) and catalytic reactor (Pd) nanoparticles (NPs). The catalysts have been characterized using enhanced techniques such as HAADF-STEM, FT-EXAFS, and probe-based FT-IR to reveal the proximity and interaction between bimetallic NPs, and thermal stability of amines. Interestingly, a four-fold enhancement in the Suzuki-Miyaura coupling reaction was obtained over PdAu/HP-AlPO-5-NR3 when compared with the analogous plasmonic catalyst with no amine functionalization under visible light irradiation. A range of amines were functionalized and their influence in the nucleation, uniform growth and stabilization of catalytic active site (Pd) and formation of electron-rich species under visible light irradiation has also been investigated. The presence of tertiary amine in the nanostructured catalyst enhanced the turnover number significantly under light irradiation conditions. This study provides an enriched understanding of plasmon-driven chemistry, where the maximized reaction rate enhancement requires the existence of active metal species and the formation of electron-enriched species under light irradiation conditions.
|
Jan 2023
|
|