I22-Small angle scattering & Diffraction
|
Abstract: In this thesis, we report the ability to fabricate hydrogels using low molecular weight gelators (LMWGs) and the subsequent characterisation of their mechanical properties over a variety of different length scales. These materials have been investigated due to their potential use in a wide range of biomedical applications including drug delivery, tissue engineering, cell culture and wound healing.
We describe the localised gelation of LMWGs on electrode surfaces via electrochemically generated pH gradients. The electrofabrication of hydrogels on electrode surfaces has shown great potential in the field of biomedicine, with applications ranging from antimicrobial wound dressings, tissue engineering scaffolds and biomimetic materials.
First, we describe the largest reported di- and tri-peptide-based hydrogels on electrode surfaces via the electrochemical oxidation of hydroquinone. Expanding upon previous work which focuses on the fabrication of hydrogels on the nanometre to millimetre scale, we deposit hydrogels around 3 cm3 in size. Furthermore, we demonstrate that there is an upper limit to how large the hydrogels can grow which is determined by the size of the pH gradient from the electrode surface. To grow hydrogels of this size, much longer deposition times of two to five hours are required than in previous reports. When the gelator/hydroquinone solution is left exposed to the open atmosphere for this amount of time, the hydroquinone in solution oxidises to benzoquinone/quinhydrone before it can be consumed electrochemically. This inhibits the electrochemical reaction and reduces gelation efficiency. To prevent this, we build a system that can perform the fabrication process under an inert nitrogen atmosphere. Using this system, we show how the choice of gelator affects the mechanical properties of the hydrogel and the resulting material phenomena that cause these changes. As well as this, we show how this approach can be used to grow multi-layered hydrogels, with each layer presenting different chemical and mechanical properties.
Secondly, we report the first known example of electrodeposition for a LMWG molecule using an electrochemically generated basic pH gradient at electrode surfaces. This approach has previously been used to fabricate hydrogels of the biopolymer chitosan using the galvanostatic reduction of hydrogen peroxide. During the electrochemical reduction of hydrogen peroxide, hydroxide ions are produced. As a result, a basic pH zone is generated at the electrode, triggering solutions of chitosan to form immobilised hydrogels on the electrode surface. Using this approach, we show how electrodeposition at high pH can be applied to our LMWG system.
We then show that we can electrochemically form hydrogels at high pH, with the gel properties being greatly improved by the addition and increased concentration of hydrogen peroxide. Following from this, we then show the simultaneous formation of two low molecular weight hydrogels at acidic and basic pH extremes. To achieve this, we couple the electrochemical reduction of hydrogen peroxide and the electrochemical oxidation of hydroquinone described in the previous chapter.
Finally, we report the electrodeposition of five carbazole-protected amino acid hydrogels on electrode surfaces via the electrochemical oxidation of hydroquinone. As well as this, we report the full to partial electropolymerisation of the pre-assembled hydrogels in perchloric acid. For the less bulky carbazole-protected amino acids, the full collapse of the hydrogel to form electrochromic polymers on the electrode surface is achieved. However, for the bulkier gelators, little to no evidence of polymerisation occurs. We believe this is due to the bulky side chain on the gelator backbone preventing the molecular reorganization required for polymerization to occur.
|
May 2023
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Yue
Pang
,
Nils
Nöthling
,
Markus
Leutzsch
,
Liqun
Kang
,
Eckhard
Bill
,
Maurice
Van Gastel
,
Edward
Reijerse
,
Richard
Goddard
,
Lucas
Wagner
,
Daniel
Santalucia
,
Serena
Debeer
,
Frank
Neese
,
Josep
Cornella
Diamond Proposal Number(s):
[30449]
Abstract: Large Spin-Orbit Coupling (SOC) is an intrinsic property of the heavy-elements that directly affects the electronic structures of the compounds. Herein we report the synthesis and characterization of a mono-coordinate bismuthinidene featuring a rigid and bulky ligand. All magnetic measurements (SQUID, NMR) point to a diamagnetic compound. However, multiconfigurational quantum chemical calculations predict the ground state of the compound to be dominated (76%) by a spin-triplet. The apparent diamagnetism is explained by an extremely large SOC induced positive zero-field-splitting of more than 4500 cm−1 that leaves the MS = 0 magnetic sublevel thermally isolated in the electronic ground state.
|
May 2023
|
|
|
Abstract: The epitaxial growth of anatase (001) films deposited by pulsed laser deposition (PLD) and molecular beam epitaxy (MBE) on SrTiO3 (001) (STO) single crystals has been studied using X-ray diffraction and surface sensitivity UHV techniques. The evolution of the strain represented by the microstrain and the change of the in-plane and out-of-plane lattice parameters with film growth temperature, the effect of the annealing temperature and the influence of the oxygen content of the film have been investigated.
The out-of-plane lattice strain shows a compressive (-0.2%) or expansive (+0.3%) behavior, in the range 600 - 900°C, for temperatures below or above 700°C, respectively. The in-plane lattice parameters, as well as the cell volume of the film, remain under compression over the entire temperature range explored.
PLD films grow into square islands that align with the surface lattice directions of the STO substrate. The maximum size of these islands is reached at growth temperatures close to 875-925°C. Film annealing at temperatures of 800°C or higher melts the islands into flat terraces. Larger terraces are reached at high annealing temperatures of 925°C for extended periods of 12 hours. This procedure allows flat surface terrace sizes of up to 650 nm to be achieved.
The crystalline quality achieved in anatase films prepared by PLD or MBE growth methods is similar. The two-step anatase growth process used during the synthesis of the films with both methods: film growth and post-annealing treatment in oxygen or air at ambient pressure, using temperature and time as key parameters, allows to control the surface terrace size and stoichiometry of the films, as well as the anatase/rutile intermixing rates at sufficiently high temperatures. This growth process could allow the substitution of their equivalent single crystals. The range of applicability of these films would include their use as structural and electronic model systems, or in harsh experimental conditions due to their low production cost.
|
May 2023
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Josephine H. R.
Maidment
,
Motoki
Shimizu
,
Adam R.
Bentham
,
Sham
Vera
,
Marina
Franceschetti
,
Apinya
Longya
,
Clare E. M.
Stevenson
,
Juan Carlos
De La Concepcion
,
Aleksandra
Bialas
,
Sophien
Kamoun
,
Ryohei
Terauchi
,
Mark J.
Banfield
Diamond Proposal Number(s):
[13467, 18565]
Open Access
Abstract: A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector’s host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.
|
May 2023
|
|
I06-Nanoscience
|
C.
Schmitt
,
L.
Sanchez-Tejerina
,
M.
Filianina
,
F.
Fuhrmann
,
H.
Meer
,
R.
Ramos
,
F.
Maccherozzi
,
D.
Backes
,
E.
Saitoh
,
G.
Finocchio
,
L.
Baldrati
,
M.
Klaui
Diamond Proposal Number(s):
[22448]
Abstract: The understanding of antiferromagnetic domain walls, which are the interface between domains with different Néel order orientations, is a crucial aspect to enable the use of antiferromagnetic materials as active elements in future spintronic devices. In this work, we demonstrate that in antiferromagnetic NiO/Pt bilayers arbitrary-shaped structures can be generated by switching driven by electrical current pulses. The generated domains are T domains, separated from each other by a domain wall whose spins are pointing toward the average direction of the two T domains rather than the common axis of the two planes. Interestingly, this direction is the same for the whole domain wall indicating the absence of strong Lifshitz invariants. The domain wall can be micromagnetically modeled by strain distributions in the NiO thin film induced by the MgO substrate, deviating from the bulk anisotropy. From our measurements we determine the domain-wall width to have a full width at half maximum of
Δ
=
98
±
10
nm, demonstrating strong confinement.
|
May 2023
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Open Access
Abstract: A photon carrying one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (ΔMs = ±1) at most. This implies that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Herein we describe a triple-magnon excitation in α-Fe2O3, which contradicts this conventional wisdom that only 1- and 2-magnon excitations are possible in a resonant inelastic X-ray scattering experiment. We observe an excitation at exactly three times the magnon energy, along with additional excitations at four and five times the magnon energy, suggesting quadruple and quintuple-magnons as well. Guided by theoretical calculations, we reveal how a two-photon scattering process can create exotic higher-rank magnons and the relevance of these quasiparticles for magnon-based applications.
|
May 2023
|
|
|
Jack
Scantlebury
,
Lucy
Vost
,
Anna
Carbery
,
Thomas E.
Hadfield
,
Oliver M.
Turnbull
,
Nathan
Brown
,
Vijil
Chenthamarakshan
,
Payel
Das
,
Harold
Grosjean
,
Frank
Von Delft
,
Charlotte M.
Deane
Open Access
Abstract: Over the past few years, many machine learning-based scoring functions for predicting the binding of small molecules to proteins have been developed. Their objective is to approximate the distribution which takes two molecules as input and outputs the energy of their interaction. Only a scoring function that accounts for the interatomic interactions involved in binding can accurately predict binding affinity on unseen molecules. However, many scoring functions make predictions based on data set biases rather than an understanding of the physics of binding. These scoring functions perform well when tested on similar targets to those in the training set but fail to generalize to dissimilar targets. To test what a machine learning-based scoring function has learned, input attribution, a technique for learning which features are important to a model when making a prediction on a particular data point, can be applied. If a model successfully learns something beyond data set biases, attribution should give insight into the important binding interactions that are taking place. We built a machine learning-based scoring function that aimed to avoid the influence of bias via thorough train and test data set filtering and show that it achieves comparable performance on the Comparative Assessment of Scoring Functions, 2016 (CASF-2016) benchmark to other leading methods. We then use the CASF-2016 test set to perform attribution and find that the bonds identified as important by PointVS, unlike those extracted from other scoring functions, have a high correlation with those found by a distance-based interaction profiler. We then show that attribution can be used to extract important binding pharmacophores from a given protein target when supplied with a number of bound structures. We use this information to perform fragment elaboration and see improvements in docking scores compared to using structural information from a traditional, data-based approach. This not only provides definitive proof that the scoring function has learned to identify some important binding interactions but also constitutes the first deep learning-based method for extracting structural information from a target for molecule design.
|
May 2023
|
|
|
Open Access
Abstract: Fragment merging is a promising approach to progressing fragments directly to on-scale potency: each designed compound incorporates the structural motifs of overlapping fragments in a way that ensures compounds recapitulate multiple high-quality interactions. Searching commercial catalogues provides one useful way to quickly and cheaply identify such merges and circumvents the challenge of synthetic accessibility, provided they can be readily identified. Here, we demonstrate that the Fragment Network, a graph database that provides a novel way to explore the chemical space surrounding fragment hits, is well-suited to this challenge. We use an iteration of the database containing >120 million catalogue compounds to find fragment merges for four crystallographic screening campaigns and contrast the results with a traditional fingerprint-based similarity search. The two approaches identify complementary sets of merges that recapitulate the observed fragment–protein interactions but lie in different regions of chemical space. We further show our methodology is an effective route to achieving on-scale potency by retrospective analyses for two different targets; in analyses of public COVID Moonshot and Mycobacterium tuberculosis EthR inhibitors, potential inhibitors with micromolar IC50 values were identified. This work demonstrates the use of the Fragment Network to increase the yield of fragment merges beyond that of a classical catalogue search.
|
May 2023
|
|
I05-ARPES
|
A. Garrison
Linn
,
Peipei
Hao
,
Kyle N.
Gordon
,
Dushyant
Narayan
,
Bryan S.
Berggren
,
Nathaniel
Speiser
,
Sonka
Reimers
,
Richard P.
Campion
,
Vít
Novák
,
Sarnjeet S.
Dhesi
,
Timur K.
Kim
,
Cephise
Cacho
,
Libor
Šmejkal
,
Tomáš
Jungwirth
,
Jonathan D.
Denlinger
,
Peter
Wadley
,
Daniel S.
Dessau
Diamond Proposal Number(s):
[24224]
Open Access
Abstract: Tetragonal CuMnAs is a room temperature antiferromagnet with an electrically reorientable Néel vector and a Dirac semimetal candidate. Direct measurements of the electronic structure of single-crystalline thin films of tetragonal CuMnAs using angle-resolved photoemission spectroscopy (ARPES) are reported, including Fermi surfaces (FS) and energy-wavevector dispersions. After correcting for a chemical potential shift of ≈− 390 meV (hole doping), there is excellent agreement of FS, orbital character of bands, and Fermi velocities between the experiment and density functional theory calculations. In addition, 2×1 surface reconstructions are found in the low energy electron diffraction (LEED) and ARPES. This work underscores the need to control the chemical potential in tetragonal CuMnAs to enable the exploration and exploitation of the Dirac fermions with tunable masses, which are predicted to be above the chemical potential in the present samples.
|
May 2023
|
|
I05-ARPES
|
Abstract: In recent years, chromium sulphur bromide (CrSBr) has emerged as a promising highly- anisotropic semiconducting two-dimensional (2D) magnetic material to explore spintronics and quantum transport due to its strongly correlated quasiparticle interactions [1]. CrSBr is an A-type layered antiferromagnet; in the bulk material, above the Néel temperature (TN = 132K) it transitions to an intermediate ferromagnetic phase before becoming paramagnetic at high temperature. Experimental work on its fascinating optoelectronic properties has been heavily supported by electronic structure calculations using a variety of methods [2,3], but direct band structure measurements to test these predictions are still lacking. Recent angle- resolved photoemission microscopy (ARPES) measurements of bulk CrSBr were unable to measure below TN due to charging effects [4]. Here, we overcome this limitation through exfoliation of CrSBr flakes onto a template-stripped gold surface (Figure 1a) [5]. Using the nanoARPES endstation of the i05 beamline at Diamond Light Source, ARPES was acquired without charging from thin flakes (~10 nm thick) at temperatures down to < 40 K. Photon energy, and polarisation, dependent measurements confirm a strongly 2D dispersion and link the band dispersions to different atomic orbitals. Temperature-dependent measurements highlight electronic structure changes through the magnetic phase transitions, including shifts of the low energy valence bands and band splitting suggestive of spin-ordering (Figure 1b,c). These results also demonstrate a simple approach for the measurement of the low- temperature band structure of insulating layered materials.
|
May 2023
|
|