Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[29692]
Open Access
Abstract: Efflux of antibacterial compounds is a major mechanism for developing antimicrobial resistance. In the Gram-positive pathogen Staphylococcus aureus, QacA, a 14 transmembrane helix containing major facilitator superfamily antiporter, mediates proton-coupled efflux of mono and divalent cationic antibacterial compounds. In this study, we report the cryo-EM structure of QacA, with a single mutation D411N that improves homogeneity and retains efflux activity against divalent cationic compounds like dequalinium and chlorhexidine. The structure of substrate-free QacA, complexed to two single-domain camelid antibodies, was elucidated to a resolution of 3.6 Å. The structure displays an outward-open conformation with an extracellular helical hairpin loop (EL7) between transmembrane helices 13 and 14, which is conserved in a subset of DHA2 transporters. Removal of the EL7 hairpin loop or disrupting the interface formed between EL7 and EL1 compromises efflux activity. Chimeric constructs of QacA with a helical hairpin and EL1 grafted from other DHA2 members, LfrA and SmvA, restore activity in the EL7 deleted QacA revealing the allosteric and vital role of EL7 hairpin in antibacterial efflux in QacA and related members.
|
Jul 2023
|
|
Krios I-Titan Krios I at Diamond
Krios IV-Titan Krios IV at Diamond
|
Seung-Wan
Yoo
,
Abdul A.
Waheed
,
Pragney
Deme
,
Sehmus
Tohumeken
,
Rana
Rais
,
Matthew D.
Smith
,
Catherine
Demarino
,
Peter A.
Calabresi
,
Fatah
Kashanchi
,
Eric O.
Freed
,
Barbara S.
Slusher
,
Norman J.
Haughey
Diamond Proposal Number(s):
[29812]
Open Access
Abstract: Although HIV-1 Gag is known to drive viral assembly and budding, the precise mechanisms by which the lipid composition of the plasma membrane is remodeled during assembly are incompletely understood. Here, we provide evidence that the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) interacts with HIV-1 Gag and through the hydrolysis of sphingomyelin creates ceramide that is necessary for proper formation of the viral envelope and viral maturation. Inhibition or depletion of nSMase2 resulted in the production of noninfectious HIV-1 virions with incomplete Gag lattices lacking condensed conical cores. Inhibition of nSMase2 in HIV-1-infected humanized mouse models with a potent and selective inhibitor of nSMase2 termed PDDC [phenyl(R)-(1-(3-(3,4-dimethoxyphenyl)-2, 6-dimethylimidazo[1,2-b]pyridazin-8-yl) pyrrolidin-3-yl)-carbamate] produced a linear reduction in levels of HIV-1 in plasma. If undetectable plasma levels of HIV-1 were achieved with PDDC treatment, viral rebound did not occur for up to 4 wk when PDDC was discontinued. In vivo and tissue culture results suggest that PDDC selectively kills cells with actively replicating HIV-1. Collectively, this work demonstrates that nSMase2 is a critical regulator of HIV-1 replication and suggests that nSMase2 could be an important therapeutic target with the potential to kill HIV-1-infected cells.
|
Jul 2023
|
|
B21-High Throughput SAXS
Krios IV-Titan Krios IV at Diamond
|
Diamond Proposal Number(s):
[24557, 27169]
Open Access
Abstract: Eukaryotes have a multitude of diverse mechanisms for organising and using their genomes, but the histones that make up chromatin are highly conserved. Unusually, histones from kinetoplastids are highly divergent. The structural and functional consequences of this variation are unknown. Here, we have biochemically and structurally characterised nucleosome core particles (NCPs) from the kinetoplastid parasite Trypanosoma brucei. A structure of the T. brucei NCP reveals that global histone architecture is conserved, but specific sequence alterations lead to distinct DNA and protein interaction interfaces. The T. brucei NCP is unstable and has weakened overall DNA binding. However, dramatic changes at the H2A-H2B interface introduce local reinforcement of DNA contacts. The T. brucei acidic patch has altered topology and is refractory to known binders, indicating that the nature of chromatin interactions in T. brucei may be unique. Overall, our results provide a detailed molecular basis for understanding evolutionary divergence in chromatin structure.
|
Jul 2023
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[19832]
Open Access
Abstract: Double-stranded DNA viruses utilise machinery, made of terminase proteins, to package viral DNA into the capsid. For cos bacteriophage, a defined signal, recognised by small terminase, flanks each genome unit. Here we present the first structural data for a cos virus DNA packaging motor, assembled from the bacteriophage HK97 terminase proteins, procapsids encompassing the portal protein, and DNA containing a cos site. The cryo-EM structure is consistent with the packaging termination state adopted after DNA cleavage, with DNA density within the large terminase assembly ending abruptly at the portal protein entrance. Retention of the large terminase complex after cleavage of the short DNA substrate suggests that motor dissociation from the capsid requires headful pressure, in common with pac viruses. Interestingly, the clip domain of the 12-subunit portal protein does not adhere to C12 symmetry, indicating asymmetry induced by binding of the large terminase/DNA. The motor assembly is also highly asymmetric, showing a ring of 5 large terminase monomers, tilted against the portal. Variable degrees of extension between N- and C-terminal domains of individual subunits suggest a mechanism of DNA translocation driven by inter-domain contraction and relaxation.
|
Jul 2023
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[32707]
Open Access
Abstract: Actin, tropomyosin and troponin, the proteins that comprise the contractile apparatus of the cardiac thin filament, are highly conserved across species. We have used cryo-EM to study the three-dimensional structure of the zebrafish cardiac thin and actin filaments. With 70% of human genes having an obvious zebrafish orthologue, and conservation of 85% of disease-causing genes, zebrafish are a good animal model for the study of human disease. Our structure of the zebrafish thin filament reveals the molecular interactions between the constituent proteins, showing that the fundamental organisation of the complex is the same as that reported in the human reconstituted thin filament. A reconstruction of zebrafish cardiac F-actin demonstrates no deviations from human cardiac actin over an extended length of 14 actin subunits. Modelling zebrafish homology models into our maps enabled us to compare, in detail, the similarity with human models. The structural similarities of troponin-T in particular, a region known to contain a hypertrophic cardiomyopathy ‘hotspot’, confirm the suitability of zebrafish to study these disease-causing mutations.
|
Jul 2023
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[20287]
Open Access
Abstract: The AAA+-ATPase p97 (also called VCP or Cdc48) unfolds proteins and disassembles protein complexes in numerous cellular processes, but how substrate complexes are loaded onto p97 and disassembled is unclear. Here, we present cryo-EM structures of p97 in the process of disassembling a protein phosphatase-1 (PP1) complex by extracting an inhibitory subunit from PP1. We show that PP1 and its partners SDS22 and inhibitor-3 (I3) are loaded tightly onto p97, surprisingly via a direct contact of SDS22 with the p97 N-domain. Loading is assisted by the p37 adapter that bridges two adjacent p97 N-domains underneath the substrate complex. A stretch of I3 is threaded into the central channel of the spiral-shaped p97 hexamer, while other elements of I3 are still attached to PP1. Thus, our data show how p97 arranges a protein complex between the p97 N-domain and central channel, suggesting a hold-and-extract mechanism for p97-mediated disassembly.
|
Jun 2023
|
|
Krios I-Titan Krios I at Diamond
|
Carlos
Lopez-Robles
,
Stefano
Scaramuzza
,
Elsa
Astorga-Simon
,
Morié
Ishida
,
Chad D.
Williamson
,
Soledad
Banos-Mateos
,
David
Gil-Carton
,
Miguel
Romero-Durana
,
Ander
Vidaurrazaga
,
Juan
Fernandez-Recio
,
Adriana L.
Rojas
,
Juan S.
Bonifacino
,
Daniel
Castaño-Díez
,
Aitor
Hierro
Diamond Proposal Number(s):
[20113, 17171]
Open Access
Abstract: Recycling of membrane proteins enables the reuse of receptors, ion channels and transporters. A key component of the recycling machinery is the endosomal sorting complex for promoting exit 1 (ESCPE-1), which rescues transmembrane proteins from the endolysosomal pathway for transport to the trans-Golgi network and the plasma membrane. This rescue entails the formation of recycling tubules through ESCPE-1 recruitment, cargo capture, coat assembly and membrane sculpting by mechanisms that remain largely unknown. Herein, we show that ESCPE-1 has a single-layer coat organization and suggest how synergistic interactions between ESCPE-1 protomers, phosphoinositides and cargo molecules result in a global arrangement of amphipathic helices to drive tubule formation. Our results thus define a key process of tubule-based endosomal sorting.
|
Jun 2023
|
|
Krios I-Titan Krios I at Diamond
|
Diamond Proposal Number(s):
[19832]
Open Access
Abstract: Carboxysomes are proteinaceous bacterial microcompartments that sequester the key enzymes for carbon fixation in cyanobacteria and some proteobacteria. They consist of a virus-like icosahedral shell, encapsulating several enzymes, including ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), responsible for the first step of the Calvin-Benson-Bassham cycle. Despite their significance in carbon fixation and great bioengineering potentials, the structural understanding of native carboxysomes is currently limited to low-resolution studies. Here, we report the characterization of a native α-carboxysome from a marine cyanobacterium by single-particle cryoelectron microscopy (cryo-EM). We have determined the structure of its RuBisCO enzyme, and obtained low-resolution maps of its icosahedral shell, and of its concentric interior organization. Using integrative modeling approaches, we have proposed a complete atomic model of an intact carboxysome, providing insight into its organization and assembly. This is critical for a better understanding of the carbon fixation mechanism and toward repurposing carboxysomes in synthetic biology for biotechnological applications.
|
Jun 2023
|
|
Krios I-Titan Krios I at Diamond
|
Gaia
Pasqualetto
,
Andrew
Mack
,
Emily
Lewis
,
Ryan
Cooper
,
Alistair
Holland
,
Ufuk
Borucu
,
Judith
Mantell
,
Tom
Davies
,
Miriam
Weckener
,
Dan
Clare
,
Tom
Green
,
Pete
Kille
,
Alex
Muhlhozl
,
Mark T.
Young
Diamond Proposal Number(s):
[26296]
Open Access
Abstract: Hemocyanins are multimeric oxygen transport proteins present in the blood of arthropods and molluscs, containing up to 8 oxygen-binding functional units per monomer. In molluscs, hemocyanins are assembled in decamer ‘building blocks’ formed of 5 dimer ‘plates’, routinely forming didecamer or higher-order assemblies with d5 or c5 symmetry. Here we describe the cryoEM structures of the didecamer (20-mer) and tridecamer (30-mer) forms of a novel hemocyanin from the slipper limpet Crepidula fornicata (SLH) at 7.0 and 4.7 Å resolution respectively. We show that two decamers assemble in a ‘tail-tail’ configuration, forming a partially capped cylinder, with an additional decamer adding on in ‘head-tail’ configuration to make the tridecamer. Analysis of SLH samples shows substantial heterogeneity, suggesting the presence of many higher-order multimers including tetra- and pentadecamers, formed by successive addition of decamers in head-tail configuration. Retrieval of sequence data for a full-length isoform of SLH enabled the use of Alphafold to produce a molecular model of SLH, which indicated the formation of dimer slabs with high similarity to those found in keyhole limpet hemocyanin. The fit of the molecular model to the cryoEM density was excellent, showing an overall structure where the final two functional units of the subunit (FU-g and FU-h) form the partial cap at one end of the decamer, and permitting analysis of the subunit interfaces governing the assembly of tail-tail and head-tail decamer interactions as well as potential sites for N-glycosylation. Our work contributes to the understanding of higher-order oligomer formation in molluscan hemocyanins and demonstrates the utility of Alphafold for building accurate structural models of large oligomeric proteins.
|
Jun 2023
|
|
Krios IV-Titan Krios IV at Diamond
|
Diamond Proposal Number(s):
[23268]
Open Access
Abstract: Microtubules play crucial roles in cellular architecture, intracellular transport, and mitosis. The availability of free tubulin subunits affects polymerization dynamics and microtubule function. When cells sense excess free tubulin, they trigger degradation of the encoding mRNAs, which requires recognition of the nascent polypeptide by the tubulin-specific ribosome-binding factor TTC5. How TTC5 initiates the decay of tubulin mRNAs is unknown. Here, our biochemical and structural analysis reveals that TTC5 recruits the poorly studied protein SCAPER to the ribosome. SCAPER, in turn, engages the CCR4-NOT deadenylase complex through its CNOT11 subunit to trigger tubulin mRNA decay. SCAPER mutants that cause intellectual disability and retinitis pigmentosa in humans are impaired in CCR4-NOT recruitment, tubulin mRNA degradation, and microtubule-dependent chromosome segregation. Our findings demonstrate how recognition of a nascent polypeptide on the ribosome is physically linked to mRNA decay factors via a relay of protein-protein interactions, providing a paradigm for specificity in cytoplasmic gene regulation.
|
Jun 2023
|
|