I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[22977]
Open Access
Abstract: Background: Established MRI and emerging X-ray contrast agents for non-invasive imaging of articular cartilage rely on non-selective electrostatic interactions with negatively charged proteoglycans. These contrast agents have limited prognostic utility in diseases such as osteoarthritis (OA) due to the characteristic high turnover of proteoglycans. To overcome this limitation, we developed a radiocontrast agent that targets the type II collagen macromolecule in cartilage and used it to monitor disease progression in a murine model of OA. Methods: To confer radiopacity to cartilage contrast agents, the naturally occurring tyrosine derivative 3,5-diiodo-L-tyrosine (DIT) was introduced into a selective peptide for type II collagen. Synthetic DIT peptide derivatives were synthesised by Fmoc-based solid-phase peptide synthesis and binding to ex vivo mouse tibial cartilage evaluated by high-resolution micro-CT. Di-Iodotyrosinated Peptide Imaging of Cartilage (DIPIC) was performed ex vivo and in vivo 4, 8 and 12 weeks in mice after induction of OA by destabilisation of the medial meniscus (DMM). Finally, human osteochondral plugs were imaged ex vivo using DIPIC. Results: Fifteen DIT peptides were synthesised and tested, yielding seven leads with varying cartilage binding strengths. DIPIC visualised ex vivo murine articular cartilage comparably to the ex vivo contrast agent phosphotungstic acid. Intra-articular injection of contrast agent followed by in vivo DIPIC enabled delineation of damaged murine articular cartilage. Finally, the translational potential of the contrast agent was confirmed by visualisation of ex vivo human cartilage explants. Conclusion: DIPIC has reduction and refinement implications in OA animal research and potential clinical translation to imaging human disease.
|
May 2022
|
|
I13-2-Diamond Manchester Imaging
|
Open Access
Abstract: There is little understanding on how cell division, expansion and migration drive joint morphogenesis. Mechanical loading is known to affect joint morphogenesis, but the effects of mechanical loading on the cellular level are yet to be explored. Mechanical loading in utero comes mainly from muscle contractions and the resultant movements. However, passive movements may also play a role in skeletal development, particularly when muscle contractions are absent, but the effects of passive movements on the skeleton have not been well characterised. This doctorate aimed (1) to develop a robust method for analysing high-resolution cell-level data of developing joints, (2) to investigate the cell-level processes contributing to joint morphogenesis, (3) to identify the mechanoregulated cell-level processes, and (4) to explore the effects of passive movement on skeletal development.
This research used embryos of wild type mice and “muscleless-limb” mutant mice from the Splotch-delayed line with a mutation in the Pax-3 gene. Aims (1–3) were achieved with ACCESS, an original automated image processing method that qualitatively and quantitatively analysed the properties of cells in murine distal humeri. The cell properties investigated included number, volume, sphericity, orientation and density. Proliferation and ECM contents were also quantified. Aim (4) was achieved by giving pregnant mice wheel exercise and therefore inducing passive movements in the embryos. Forelimbs of the embryos were scanned in 3D and rudiment length and mineralisation were quantified.
For the first time, cell number and volume were reported as being key to the growth of a murine joint. Cell volume, orientation and proliferation were mechanoregulated. Wheel exercise affected forelimb rudiments significantly and could restore the length of some rudiments in muscleless-limb mutants. This research showcased new analytical and experimental methods adaptable for wider purposes, and advanced our knowledge for joint morphogenesis on the cell-level, especially relating to mechanoregulation.
|
May 2022
|
|
I13-2-Diamond Manchester Imaging
|
Nicole
Sommer
,
Daniela
Hirzberger
,
Lisa
Paar
,
Leopold
Berger
,
Hanna
Cwieka
,
Uwe Y.
Schwarze
,
Valentin
Herber
,
Begum
Okutan
,
Andrew J.
Bodey
,
Regine
Willumeit-Römer
,
Berit
Zeller-Plumhoff
,
Jörg F.
Löffler
,
Annelie M.
Weinberg
Diamond Proposal Number(s):
[25485]
Abstract: Implant removal is unnecessary for biodegradable magnesium (Mg)-based implants and, therefore, the related risk for implant-induced fractures is limited. Aging, on the other hand, is associated with low bone-turnover and decreased bone mass and density, and thus increased fracture risk. Osteoporosis is accompanied by Mg deficiency, therefore, we hypothesized that Mg-based implants may support bone formation by Mg2+ ion release in an ovariectomy-induced osteoporotic rat model. Hence, we investigated osseointegration and implant degradation of a low-alloyed, degrading Mg–Zn–Ca implant (ZX00) in ovariectomy-induced osteoporotic (Osteo), old healthy (OH), and juvenile healthy (JH) groups of female Sprague Dawley rats via in vivo micro-computed tomography (µCT). For the Osteo rats, we demonstrate diminished trabecular bone already after 8 weeks upon ovariectomy and significantly enhanced implant volume loss, with correspondingly pronounced gas formation, compared to the OH and JH groups. Sclerotic rim development was observed in about half of the osteoporotic rats, suggesting a prevention from foreign-body and osteonecrosis development. Synchrotron radiation-based µCT confirmed lower bone volume fractions in the Osteo group compared to the OH and JH groups. Qualitative histological analysis additionally visualized the enhanced implant degradation in the Osteo group. To date, ZX00 provides an interesting implant material for young and older healthy patients, but it may not be of advantage in pharmacologically untreated osteoporotic conditions.
|
May 2022
|
|
B24-Cryo Soft X-ray Tomography
I13-2-Diamond Manchester Imaging
Krios I-Titan Krios I at Diamond
|
Open Access
Abstract: As sample preparation and imaging techniques have expanded and improved to include a variety of options for larger sized and numbers of samples, the bottleneck in volumetric imaging is now data analysis. Annotation and segmentation are both common, yet difficult, data analysis tasks which are required to bring meaning to the volumetric data. The SuRVoS application has been updated and redesigned to provide access to both manual and machine learning-based segmentation and annotation techniques, including support for crowd sourced data. Combining adjacent, similar voxels (supervoxels) provides a mechanism for speeding up segmentation both in the painting of annotation and by training a segmentation model on a small amount of annotation. The support for layers allows multiple datasets to be viewed and annotated together which, for example, enables the use of correlative data (e.g. crowd-sourced annotations or secondary imaging techniques) to guide segmentation. The ability to work with larger data on high-performance servers with GPUs has been added through a client-server architecture and the Pytorch-based image processing and segmentation server is flexible and extensible, and allows the implementation of deep learning-based segmentation modules. The client side has been built around Napari allowing integration of SuRVoS into an ecosystem for open-source image analysis while the server side has been built with cloud computing and extensibility through plugins in mind. Together these improvements to SuRVoS provide a platform for accelerating the annotation and segmentation of volumetric and correlative imaging data across modalities and scales.
|
Apr 2022
|
|
I13-2-Diamond Manchester Imaging
|
Saranarayanan
Ramachandran
,
Yi
Zhong
,
Stuart
Robertson
,
Christoforos
Panteli
,
Shuibao
Liang
,
Fan
Wu
,
Renqian
Zhou
,
Shashidhara
Marathe
,
Zhaoxia
Zhou
,
Andrew S.
Holmes
,
Sarah J.
Haigh
,
Changqing
Liu
,
Wajira
Mirihanage
Diamond Proposal Number(s):
[24151]
Abstract: Self-Propagating Exothermic Reactive (SPER) bonding with lead-free solders is potentially attractive for microelectronics assembly due to its highly localised heating and minimal thermal loading of the components and substrates. The transient dynamics of melting, wetting, solidification and defect formation during SPER bonding were observed using in-situ synchrotron X-ray imaging with sub-millisecond temporal resolution and the results were further analysed using electron microscopy and thermal modelling. In-situ imaging revealed the preferential melting of the solder and subsequent wetting of the substrate. Numerous air bubbles were observed to form at the bonding interface. The distribution of these bubbles was found to vary with the thermal conductivity and wettability of the substrates. These bubbles appear to reduce the effectiveness of bonding by promoting the formation of cracks and voids within the solder joint. Our results show that metallisation layers on the bonding substrate can influence the dynamics of melting for the solder materials and thereby directly influence the reliability of SPER interconnects.
|
Apr 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[17222]
Abstract: Component failure due to cold dwell fatigue of titanium and its alloys is a long-standing problem which has significant safety and economic implications to the aviation industry. This can be addressed by understanding the governing mechanisms of time dependent plasticity behaviour of Ti at low temperatures. Here, stress relaxation tests were performed at four different temperatures on three major alloy systems: commercially pure titanium (two alloys with different oxygen content), Ti-6Al-4V (two microstructures with differing phase fractions) and Ti-6Al-2Sn-4Zr-Mo (two alloys with different Mo content =2 or 6, and portion of phase). Key parameters controlling the time dependent plasticity were determined as a function of temperature. Both activation volume and energy were found to increase with temperature in all six alloys. It was found that the dwell fatigue effect is more significant by oxygen alloying but is suppressed by the addition of Mo. The presence of the phase did not strongly affect the dwell fatigue, however, it was suppressed at high temperature due to the low strain rate and strain rate sensitivity.
|
Apr 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Chun
Huang
,
Matthew
Wilson
,
Kosuke
Suzuki
,
Enzo
Liotti
,
Thomas
Connolley
,
Oxana
Magdysyuk
,
Stephen
Collins
,
Frederic
Van Assche
,
Matthieu N
Boone
,
Matthew C.
Veale
,
Andrew
Lui
,
Rhian-Mair
Wheater
,
Chu Lun Alex
Leung
Diamond Proposal Number(s):
[23400]
Open Access
Abstract: The performance of Li+ ion batteries (LIBs) is hindered by steep Li+ ion concentration gradients in the electrodes. Although thick electrodes (≥300 µm) have the potential for reducing the proportion of inactive components inside LIBs and increasing battery energy density, the Li+ ion concentration gradient problem is exacerbated. Most understanding of Li+ ion diffusion in the electrodes is based on computational modeling because of the low atomic number (Z) of Li. There are few experimental methods to visualize Li+ ion concentration distribution of the electrode within a battery of typical configurations, for example, coin cells with stainless steel casing. Here, for the first time, an interrupted in situ correlative imaging technique is developed, combining novel, full-field X-ray Compton scattering imaging with X-ray computed tomography that allows 3D pixel-by-pixel mapping of both Li+ stoichiometry and electrode microstructure of a LiNi0.8Mn0.1Co0.1O2 cathode to correlate the chemical and physical properties of the electrode inside a working coin cell battery. An electrode microstructure containing vertically oriented pore arrays and a density gradient is fabricated. It is shown how the designed electrode microstructure improves Li+ ion diffusivity, homogenizes Li+ ion concentration through the ultra-thick electrode (1 mm), and improves utilization of electrode active materials.
|
Apr 2022
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[18758]
Abstract: Natural surface gas seeps provide a significant input of greenhouse gas emissions into the Earth’s atmosphere and hydrosphere. The gas flux is controlled by the properties of underlying fluid-escape conduits, which are present within sedimentary basins globally. These conduits permit pressure-driven fluid flow, hydraulically connecting deeper strata with the Earth’s surface; however they can only be fully resolved at sub-seismic scale. Here, a novel ‘minus cement and matrix permeability’ method using three-dimensional X-ray micro-computed tomography imaging enables the improved petrophysical linkage of outcrop and sub-surface data. The methodology is applied to the largest known outcrop of an inactive fluid-escape system, the Panoche Giant Intrusion Complex in Central California, where samples were collected along transects of the 600 to 800 m stratigraphic depth range to constrain porosity and permeability spatial heterogeneity. The presence of silica cement and clay matrix within the intergranular pores of sand intrusions are the primary control of porosity (17 to 27%) and permeability (≤1 to ca 500 mD) spatial heterogeneity within the outcrop analogue system. Following the digital removal of clay matrix and silica (opal-CT and quartz) cement derived from the mudstone host strata, the sand intrusions have porosity-permeability ranges of ca 30 to 40% and 103 to 104 mD. These calculations are closely comparable to active sub-surface systems in sedimentary basins. Field observations revealed at decreasing depth, the connected sand intrusion network reduces in thickness and becomes carbonate cemented, terminating at carbonate mounds formed from methane escape at the seafloor. A new conceptual model integrates the pore-scale calculations and field-scale observations to highlight the key processes that control sand intrusion permeability, spatially and temporally. The study demonstrates the control of matrix and cement addition on the physical properties of fluid-escape conduits, which has significance for hydrocarbon reservoir characterization and modelling, as well as subsurface CO2 and energy storage containment assessment.
|
Apr 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Lorna
Sinclair
,
Yunhui
Chen
,
Samuel J.
Clark
,
Sebastian
Marussi
,
Saurabh
Shah
,
Oxana
Magdysyuk
,
Robert
Atwood
,
Gavin J.
Baxter
,
Martyn
Jones
,
Graham
Mccartney
,
Chu Lun Alex
Leung
,
Peter D.
Lee
Diamond Proposal Number(s):
[20096]
Open Access
Abstract: During directed energy deposition (DED) additive manufacturing, powder agglomeration and sintering can occur outside of the melt pool when using titanium alloy powders. Using in situ synchrotron radiography we investigate the mechanisms by which sintering of Ti6242 powder occurs around the pool, performing a parametric study to determine the influence of laser power and stage traverse speed on sinter build-up. The results reveal that detrimental sinter can be reduced using a high laser power or increased stage traverse speed, although the latter also reduces deposition layer thickness. The mechanism of sinter formation during DED was determined to be in-flight heating of the powder particles in the laser beam. Calculations of particle heating under the processing conditions explored in this study confirm that powder particles can reasonably exceed 700 °C, the threshold for Ti surface oxide dissolution, and thus the powder is prone to sintering if not incorporated into the melt pool. The build-up of sinter powder layer on deposit surfaces led to lack of fusion pores. To mitigate sinter formation and its detrimental effects on DED component quality, it is essential that the powder delivery spot area is smaller than the melt pool, ensuring most powder lands in the melt pool.
|
Apr 2022
|
|
B24-Cryo Soft X-ray Tomography
|
Diamond Proposal Number(s):
[25534, 27879]
Open Access
Abstract: In the world of bioimaging, every choice made determines the quality and content of the data collected. The choice of imaging techniques for a study could showcase or dampen expected outcomes. Synchrotron radiation is indispensable for biomedical research, driven by the need to see into biological materials and capture intricate biochemical and biophysical details at controlled environments. The same need drives correlative approaches that enable the capture of heterologous but complementary information when studying any one single target subject. Recently, the applicability of one such synchrotron technique in bioimaging, soft X-ray tomography (SXT), facilitates exploratory and basic research and is actively progressing towards filling medical and industrial needs for the rapid screening of biomaterials, reagents and processes of immediate medical significance. Soft X-ray tomography at cryogenic temperatures (cryoSXT) fills the imaging resolution gap between fluorescence microscopy (in the hundreds of nanometers but relatively accessible) and electron microscopy (few nanometers but requires extensive effort and can be difficult to access). CryoSXT currently is accessible, fully documented, can deliver 3D imaging to 25 nm resolution in a high throughput fashion, does not require laborious sample preparation procedures and can be correlated with other imaging techniques. Here, we present the current state of SXT and outline its place within the bioimaging world alongside a guided matrix that aids decision making with regards to the applicability of any given imaging technique to a particular project. Case studies where cryoSXT has facilitated a better understanding of biological processes are highlighted and future directions are discussed.
|
Mar 2022
|
|