I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[26803]
Abstract: Background: The platelet–signaling receptor glycoprotein VI (GPVI) is a promising antithrombotic target. We have previously raised a series of high-affinity nanobodies (Nbs) against GPVI and identified Nb2, Nb21, and Nb35 as potent GPVI inhibitors. The Nb2 binding site has been mapped to the D1 domain, which is directly adjacent to the CRP binding site. Ligand–binding complementary determining region 3 has only 15% conservation between all 3 Nbs. Objectives: To map the binding sites of Nb21 and Nb35 on GPVI. Methods: We determined the X-ray crystal structure of the D1 and D2 extracellular domains of the GPVI-Nb35 complex. We then looked at the effects of various GPVI mutations on the ability of Nbs to inhibit collagen binding and GPVI signaling using surface binding assays and transfected cell lines. Results: The crystal structure of GPVI bound to Nb35 was solved. GPVI was present as a monomer, and the D1+D2 conformation was comparable to that in the dimeric structure. Arg46, Tyr47, and Ala57 are common residues on GPVI targeted by both Nb2 and Nb35. Mutating Arg46 to an Ala abrogated the ability of Nb2, Nb21, and Nb35 to inhibit collagen–induced GPVI signaling and blocked the binding of all 3 Nbs. In addition, Arg60 was found to reduce Nb21 inhibition but not the inhibition Nb2 or Nb35. Conclusions: These findings reveal key residues involved in the high-affinity binding of GPVI inhibitors and negate the idea that GPVI dimerization induces a conformational change required for ligand binding.
|
Dec 2022
|
|
B18-Core EXAFS
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[25166]
Open Access
Abstract: Cation migration on electrochemical cycling can significantly influence the performance of li-ion cathode materials. Phases of composition LiFe2–xInxSbO6 (0 < x <1) adopt crystal structures described in space group Pnnm, consisting of a hexagonally close-packed array of oxide ions, with Fe/In and Sb cations ordered on octahedral sites, and lithium cations located within partially occupied tetrahedral sites. NPD, SXRD, and 57Fe Mössbauer data indicate that on reductive lithium insertion (either chemically or electrochemically), LiFe2SbO6 is converted to Li2Fe2SbO6 accompanied by large-scale cation migration, to form a partially Fe/Li cation-ordered and Fe2+/Fe3+ charge-ordered phase from which lithium cations cannot be easily removed, either chemically or electrochemically. Partial substitution of Fe with In suppresses the degree of cation migration that occurs on lithium insertion such that no structural change is observed when LiFeInSbO6 is converted into Li1.5FeInSbO6, allowing the system to be repeatedly electrochemically cycled between these two compositions. Phases with intermediate levels of In substitution exhibit low levels of Fe migration on Li insertion and electrochemical capacities which evolve on cycling. The mechanism by which the In3+ cations suppress the migration of Fe cations is discussed along with the cycling behavior of the LiFe1.5In0.5SbO6–Li1.75Fe1.5In0.5SbO6.
|
Dec 2022
|
|
I10-Beamline for Advanced Dichroism
|
Diamond Proposal Number(s):
[10207]
Open Access
Abstract: X-ray magnetic circular dichroism (XMCD), which by virtue of the sum rules provides element-specific spin and orbital moments, is obtained from the difference between two polarized spectra by reversing the direction of either the light helicity or the applied magnetic field. Usually, it is tacitly assumed that these two spectra are obtained using the same absolute degree of light and magnetic polarization. This is, however, not always possible and depends on circumstances that can be beyond control. First, we recapitulate the conventional XMCD sum rule method to obtain the values of the moments and emphasize some of the complications in the case of the rare-earth
M
4
,
5
edges, such as the presence of strong core-hole
j
j
overlap, linear dichroism, and magnetic dipole term
⟨
T
z
⟩
. Instead, we propose an alternative method. Using the individual polarized x-ray absorption spectra obtained at the Ho and Dy
M
5
edges, where each of the
Δ
J
=
−
1
,
0
, and
+
1
transitions are separated by
∼
2
eV in photon energy, we are able to determine independently the degree of circular dichroism in a single spectrum. Since light is a transverse wave, we need to include, apart from the circular dichroism, also a linear dichroism contribution in order to fit the circularly polarized spectra. In the measurements on paramagnetic rare-earth dopants it was found that reversing the field produces the same degree of circular dichroism, while reversing the helicity yields a
∼
20% difference in the degree of circular dichroism.
|
Dec 2022
|
|
B21-High Throughput SAXS
|
Elisabetta
Esposito
,
Laura
Calderan
,
Andrea
Galvan
,
Enrica
Cappellozza
,
Markus
Drechsler
,
Paolo
Mariani
,
Alessia
Pepe
,
Maddalena
Sguizzato
,
Enrico
Vigato
,
Edoardo
Dalla Pozza
,
Manuela
Malatesta
Diamond Proposal Number(s):
[21035]
Open Access
Abstract: In this study, the transdermal fate of vesicular nanosystems was investigated. Particularly, ethosomes based on phosphatidylcholine 0.9% w/w and transethosomes based on phosphatidylcholine 0.9 or 2.7% w/w plus polysorbate 80 0.3% w/w as an edge activator were prepared and characterized. The vesicle mean size, morphology and deformability were influenced by both phosphatidylcholine and polysorbate 80. Indeed, the mean diameters of ethosome were around 200 nm, while transethosome’s mean diameters were 146 or 350 nm in the case of phosphatidylcholine 0.9 or 2.7%, w/w, respectively. The highest deformability was achieved by transethosomes based on phosphatidylcholine 0.9%, w/w. The three types of vesicular nanosystems were applied on explanted human skin maintained in a bioreactor. Transmission electron microscopy demonstrated that all vesicles were able to enter the skin, keeping their structural integrity. Notably, the vesicle penetration capability was influenced by their physical-chemical features. Indeed, ethosomes reached keratinocytes and even the dermis, phosphatidylcholine 0.9% transethosomes were found in keratinocytes and phosphatidylcholine 2.7% transethosomes were found only in corneocytes of the outer layer. These findings open interesting perspectives for a differentiated application of these vesicles for transdermal drug delivery as a function of the cutaneous pathology to be addressed.
|
Dec 2022
|
|
I10-Beamline for Advanced Dichroism
|
N.-J.
Steinke
,
S. L.
Zhang
,
P. J.
Baker
,
L. B.
Duffy
,
F.
Kronast
,
J.
Krieger
,
Z.
Salman
,
T.
Prokscha
,
A.
Suter
,
S.
Langridge
,
Gerrit
Van Der Laan
,
T.
Hesjedal
Diamond Proposal Number(s):
[11503]
Abstract: Chromium-doped
Sb
2
Te
3
is a magnetic topological insulator (MTI), which belongs to the
(
Sb
,
Bi
)
2
(
Se
,
Te
)
3
family. When doped with the transition metals V, Cr, and Mn this family displays long-range ferromagnetic order above liquid nitrogen temperature and is currently intensely explored for quantum device applications. Despite the large magnetic ordering temperature, the experimental observation of dissipationless electrical transport channels, i.e., the quantum anomalous Hall effect, is limited in these materials to temperatures below
≈
2
K. Inhomogeneities in the MTI have been identified as a major concern, affecting the coupling between the Dirac states and the magnetic dopants. Nevertheless, details on the local magnetic order in these materials are not well understood. Here, we report the study of the magnetic correlations in thin films using a combination of muon spin relaxation
(
μ
SR
)
, and magnetic soft x-ray spectroscopy and imaging.
μ
SR
provides two key quantities for understanding the microscopic magnetic behavior: The magnetic volume fraction, i.e., the percentage of the material that is ferromagnetically ordered, and the relaxation rate, which is sensitive to the magnetic static
(
≈
μ
s
)
and dynamic disorder. By choosing different implantation depths for the muons, one can further discriminate between near-surface and bulk properties. No evidence for a surface enhancement of the magnetic ordering is observed, but, instead, we find evidence of small magnetically ordered clusters in a paramagnetic background, which are coupled. The significant magnetic field shift that is present in all samples indicates a percolation transition that proceeds through the formation and growth of magnetically ordered spin clusters. We further find that fluctuations are present even at low temperatures, and that there appears to be a transition between superparamagnetism and superferromagnetism.
|
Dec 2022
|
|
I14-Hard X-ray Nanoprobe
|
Takaaki
Noguchi
,
Toru
Matsumoto
,
Akira
Miyake
,
Yohei
Igami
,
Mitsutaka
Haruta
,
Hikaru
Saito
,
Satoshi
Hata
,
Yusuke
Seto
,
Masaaki
Miyahara
,
Naotaka
Tomioka
,
Hope A.
Ishii
,
John P.
Bradley
,
Kenta K.
Ohtaki
,
Elena
Dobrică
,
Hugues
Leroux
,
Corentin
Le Guillou
,
Damien
Jacob
,
Francisco
De La Peña
,
Sylvain
Laforet
,
Maya
Marinova
,
Falko
Langenhorst
,
Dennis
Harries
,
Pierre
Beck
,
Thi H. V.
Phan
,
Rolando
Rebois
,
Neyda M.
Abreu
,
Jennifer
Gray
,
Thomas
Zega
,
Pierre-M.
Zanetta
,
Michelle S.
Thompson
,
Rhonda
Stroud
,
Kate
Burgess
,
Brittany A.
Cymes
,
John C.
Bridges
,
Leon
Hicks
,
Martin R.
Lee
,
Luke
Daly
,
Phil A.
Bland
,
Michael E.
Zolensky
,
David R.
Frank
,
James
Martinez
,
Akira
Tsuchiyama
,
Masahiro
Yasutake
,
Junya
Matsuno
,
Shota
Okumura
,
Itaru
Mitsukawa
,
Kentaro
Uesugi
,
Masayuki
Uesugi
,
Akihisa
Takeuchi
,
Mingqi
Sun
,
Satomi
Enju
,
Aki
Takigawa
,
Tatsuhiro
Michikami
,
Tomoki
Nakamura
,
Megumi
Matsumoto
,
Yusuke
Nakauchi
,
Masanao
Abe
,
Masahiko
Arakawa
,
Atsushi
Fujii
,
Masahiko
Hayakawa
,
Naru
Hirata
,
Naoyuki
Hirata
,
Rie
Honda
,
Chikatoshi
Honda
,
Satoshi
Hosoda
,
Yu-Ichi
Iijima
,
Hitoshi
Ikeda
,
Masateru
Ishiguro
,
Yoshiaki
Ishihara
,
Takahiro
Iwata
,
Kousuke
Kawahara
,
Shota
Kikuchi
,
Kohei
Kitazato
,
Koji
Matsumoto
,
Moe
Matsuoka
,
Yuya
Mimasu
,
Akira
Miura
,
Tomokatsu
Morota
,
Satoru
Nakazawa
,
Noriyuki
Namiki
,
Hirotomo
Noda
,
Rina
Noguchi
,
Naoko
Ogawa
,
Kazunori
Ogawa
,
Tatsuaki
Okada
,
Chisato
Okamoto
,
Go
Ono
,
Masanobu
Ozaki
,
Takanao
Saiki
,
Naoya
Sakatani
,
Hirotaka
Sawada
,
Hiroki
Senshu
,
Yuri
Shimaki
,
Kei
Shirai
,
Seiji
Sugita
,
Yuto
Takei
,
Hiroshi
Takeuchi
,
Satoshi
Tanaka
,
Eri
Tatsumi
,
Fuyuto
Terui
,
Ryudo
Tsukizaki
,
Koji
Wada
,
Manabu
Yamada
,
Tetsuya
Yamada
,
Yukio
Yamamoto
,
Hajime
Yano
,
Yasuhiro
Yokota
,
Keisuke
Yoshihara
,
Makoto
Yoshikawa
,
Kent
Yoshikawa
,
Ryohta
Fukai
,
Shizuho
Furuya
,
Kentaro
Hatakeda
,
Tasuku
Hayashi
,
Yuya
Hitomi
,
Kazuya
Kumagai
,
Akiko
Miyazaki
,
Aiko
Nakato
,
Masahiro
Nishimura
,
Hiromichi
Soejima
,
Ayako I.
Suzuki
,
Tomohiro
Usui
,
Toru
Yada
,
Daiki
Yamamoto
,
Kasumi
Yogata
,
Miwa
Yoshitake
,
Harold C.
Connolly
,
Dante S.
Lauretta
,
Hisayoshi
Yurimoto
,
Kazuhide
Nagashima
,
Noriyuki
Kawasaki
,
Naoya
Sakamoto
,
Ryuji
Okazaki
,
Hikaru
Yabuta
,
Hiroshi
Naraoka
,
Kanako
Sakamoto
,
Shogo
Tachibana
,
Sei-Ichiro
Watanabe
,
Yuichi
Tsuda
Open Access
Abstract: Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss.
|
Dec 2022
|
|
I11-High Resolution Powder Diffraction
|
Abstract: A high-resolution synchrotron X-ray diffraction study of a single-crystal YCrO3 compound was employed to obtain its crystallographic information, such as lattice parameters, atomic positions, bond lengths and angles, and local crystalline distortion size and mode. The measurements were taken at 120 K (below the antiferromagnetic transition temperature TN ≃ 141.5 K), 300 K (between TN and the ferroelectric transition temperature TC ≃ 473 K) and 500 K (above TC). Using the high intensity of synchrotron X-rays, it was possible to refine collected patterns with the previously proposed noncentrosymmetric monoclinic structural model (P1211, No. 4) and determine detailed structural parameters. Meanwhile, for a controlled study, the data were refined with the centrosymmetric orthorhombic space group (Pmnb, No. 62). The lattice constants a, b and c and the unit-cell volume increased nearly linearly upon heating. With the P1211 space group, the distributions of bond lengths and angles, as well as local distortion strengths, were observed to be more dispersed. This implies that (i) the local distortion mode of Cr2O6 at 120 K correlates with the formation of canted antiferromagnetic order by Cr1–Cr2 spin interactions, primarily via intermediate O3 and O4 ions; and (ii) the previously reported dielectric anomaly may have a microscopic origin in the strain-balanced Cr1—O3(O4) and Cr2—O5(O6) bonds as well as the local distortion modes of Cr1O6 and Cr2O6 octahedra at 300 K. Local crystalline distortion is shown to be an important factor in the formation of ferroelectric order. The comprehensive set of crystallographic information reported here allows for a complete understanding of the unique magnetic and ferroelectric properties of YCrO3.
|
Dec 2022
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[25542]
Open Access
Abstract: The realisation of post-combustion CO2 capture (PCCC) at industrial scale remains limited; one challenge is the concerns around capital costs and another concern is corrosion of the system itself. Corrosion resistance and mitigation against the amine solvent monoethanolamine (MEA) was studied, using the inhibitor copper (II) carbonate basic (CC). Carbon steel (C1018) was tested in CO2 loaded, 5M aqueous MEA solution, alone and in the presence of CC, to assess the corrosivity of the solution. Immersion testing used mass loss, Fe and Cu ion concentration in solution via ICP-MS, imaging (SEM) and analytical techniques (XRD and EDX) to investigate the effect of corrosion. Generally, the use of CC improved C1018 corrosion resistance relative to C1018 alone. Even at low concentrations (0.9 mM), CC was effective in inhibiting corrosion against CO2 loaded MEA, as the observed corrosion rate was effectively zero and no dissolved Fe was detected in solution. There was no evidence of copper surface adsorption. To clarify the solution chemistry resulting in corrosion inhibition, the local chemical environment of Fe and Cu were probed by Cu and Fe K-edge X-ray Absorption Spectroscopy, respectively. The Cu K- edge HERFD-XANES spectra reveal that a Cu2+ amine complex forms, critical to understanding the structure which is promoting significant corrosion inhibition.
|
Dec 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[22225]
Open Access
Abstract: The most studied catalysts for methane dehydroaromatization (MDA)─Mo/ZSM-5─are not commercialized yet due to the rapid deactivation and insufficient activity. Catalytic systems based on Fe and Re are potential alternatives to Mo-containing zeolites. Here, we compare the catalytic performance of these catalysts as a function of metal type and its loading in ZSM-5 zeolite. The results show that the catalytic activity decreases in the order of Re/ZSM-5 > Mo/ZSM-5 > Fe/ZSM-5, while the catalyst stability decreases in the opposite order: Fe/ZSM-5 > Mo/ZSM-5 > Re/ZSM-5. The active metal species in the working catalysts were determined by operando X-ray absorption near-edge structure spectroscopy combined with mass spectrometry. We found that Re0 and Fe2+ species are the most likely active species for the catalytic dehydroaromatization of CH4 to aromatics in respective catalysts. Combining the pulse reaction technique with operando thermogravimetry analysis–mass spectrometry experiments, we demonstrate that the length of the induction period strongly correlates to the activity of the catalyst. The longer induction period of the Fe/ZSM-5 catalyst indicates the slow growth of hydrocarbon pool intermediates inside the zeolite pores and thus explains its poor catalytic performance. Finally, both the formation of hydrocarbon pool species and the activity of Fe/ZSM-5 can be improved by increasing the Fe loading, reaction pressure, and space velocity.
|
Dec 2022
|
|
I06-Nanoscience
|
Allan S.
Johnson
,
Daniel
Perez-Salinas
,
Khalid M.
Siddiqui
,
Sungwon
Kim
,
Sungwook
Choi
,
Klara
Volckaert
,
Paulina E.
Majchrzak
,
Soeren
Ulstrup
,
Naman
Agarwal
,
Kent
Hallman
,
Richard F.
Haglund
,
Christian M.
Günther
,
Bastian
Pfau
,
Stefan
Eisebitt
,
Dirk
Backes
,
Francesco
Maccherozzi
,
Ann
Fitzpatrick
,
Sarnjeet S.
Dhesi
,
Pierluigi
Gargiani
,
Manuel
Valvidares
,
Nongnuch
Artrith
,
Frank
De Groot
,
Hyeongi
Choi
,
Dogeun
Jang
,
Abhishek
Katoch
,
Soonnam
Kwon
,
Sang Han
Park
,
Hyunjung
Kim
,
Simon E.
Wall
Diamond Proposal Number(s):
[22048]
Open Access
Abstract: Using light to control transient phases in quantum materials is an emerging route to engineer new properties and functionality, with both thermal and non-thermal phases observed out of equilibrium. Transient phases are expected to be heterogeneous, either through photo-generated domain growth or by generating topological defects, and this impacts the dynamics of the system. However, this nanoscale heterogeneity has not been directly observed. Here we use time- and spectrally resolved coherent X-ray imaging to track the prototypical light-induced insulator-to-metal phase transition in vanadium dioxide on the nanoscale with femtosecond time resolution. We show that the early-time dynamics are independent of the initial spatial heterogeneity and observe a 200 fs switch to the metallic phase. A heterogeneous response emerges only after hundreds of picoseconds. Through spectroscopic imaging, we reveal that the transient metallic phase is a highly orthorhombically strained rutile metallic phase, an interpretation that is in contrast to those based on spatially averaged probes. Our results demonstrate the critical importance of spatially and spectrally resolved measurements for understanding and interpreting the transient phases of quantum materials.
|
Dec 2022
|
|