B16-Test Beamline
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[11372, 12446]
Abstract: Aging leads to an increase in iron-loaded cellular structures in the choroid of the eye. This study was carried out to determine the distribution and content of iron, zinc and copper in the macular retina, choroid and retrobulbar optic nerve of young (4-5 years, n=3) and aged (15-16 years, n=5) male non-human primates, Macaca fascicularis, whose ocular anatomy is similar to humans. Thirty-µm-thick tissue sections were analysed with synchrotron X-ray fluorescence and stained histologically for iron deposition. Quantitative measurements showed high levels of iron, zinc and copper in the choroid and retinal pigment epithelium in the macular area and arachnoid layer in the retrobulbar optic nerve. In aged animals compared to young ones, there was an increase in iron in the choroid with larger deposits and and iron-loaded cellular structures. Iron-accumulation within these cellular structures may contribute to choroidal function impairment in aging and age-related macular degeneration.
|
Aug 2016
|
|
B16-Test Beamline
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[11372, 12446]
Open Access
Abstract: We present further analyses of a previous experiment published in 2016 where the distribution, concentration and correlation of iron, zinc, copper and sulphur in the choroid of the eye in young and aged old world primates (Macaca fascicularis) was studied with synchrotron X-ray fluorescence with a 2 μm resolution. The results indicate that iron accumulates in hotspots in the choroid with age with fluorescence intensity ranging from 2- to 7-fold (1002–3752 ppm) the mean level in the choroidal stroma (500 ppm) and maximum iron levels in blood vessel lumina. Iron hotspots with iron ppm > 1000 preferentially contained Fe3+ as demonstrated by Perls staining. There was a strong spatial co-localisation and correlation between copper and zinc (Pearson’s correlation coefficient 0.97), and both elements with sulphur in the choroid of young animals. However, these are reduced in the choroid of aged animals and lost in the iron hotspots. The lack of proportional co-distribution suggests that iron accumulation does not induce a concomitant increase in zinc, copper or zinc-, copper-metalloproteins. It is possible that the iron hotspots are ferritin or hemosiderin molecules loaded with Fe3+ in stable, insoluble, non-toxic complexes without a significant oxidative environment.
|
Oct 2018
|
|
B18-Core EXAFS
I18-Microfocus Spectroscopy
I20-EDE-Energy Dispersive EXAFS (EDE)
I20-Scanning-X-ray spectroscopy (XAS/XES)
Controls
Detectors
Optics
|
Sofia
Diaz-moreno
,
Monica
Amboage
,
Mark
Basham
,
Roberto
Boada
,
Nicholas E.
Bricknell
,
Giannantonio
Cibin
,
Thomas
Cobb
,
Jacob
Filik
,
Adam
Freeman
,
Kalotina
Geraki
,
Diego
Gianolio
,
Shusaku
Hayama
,
Konstantin
Ignatyev
,
Luke
Keenan
,
Iuliia
Mikulska
,
J. Frederick W.
Mosselmans
,
James J.
Mudd
,
Stephen A.
Parry
Open Access
Abstract: This manuscript presents the current status and technical details of the Spectroscopy Village at Diamond Light Source. The Village is formed of four beamlines: I18, B18, I20-Scanning and I20-EDE. The village provides the UK community with local access to a hard X-ray microprobe, a quick-scanning multi-purpose XAS beamline, a high-intensity beamline for X-ray absorption spectroscopy of dilute samples and X-ray emission spectroscopy, and an energy-dispersive extended X-ray absorption fine-structure beamline. The optics of B18, I20-scanning and I20-EDE are detailed; moreover, recent developments on the four beamlines, including new detector hardware and changes in acquisition software, are described.
|
Jul 2018
|
|
B18-Core EXAFS
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[4939]
Open Access
Abstract: The physicochemical state of a catalyst is a key factor in determining both activity and selectivity; however these materials are often not structurally or compositionally homogeneous. Here we report on the 3-dimensional imaging of an industrial catalyst, Mo- promoted colloidal Pt supported on carbon. The distribution of both the active Pt species and Mo promoter have been mapped over a single particle of catalyst using microfocus X-ray Fluorescence computed tomography. X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure revealed a mixed local coordination environment, including the presence of both metallic Pt clusters and Pt chloride species, but also no direct interaction between the catalyst and Mo promoter. We also report on the benefits of scanning μ-XANES computed tomography for chemical imaging, allowing for 2- and 3-dimensional mapping of the local electronic and geometric environment, in this instance for both the Pt catalyst and Mo promoter throughout the catalyst particle.
|
Nov 2014
|
|
B18-Core EXAFS
I18-Microfocus Spectroscopy
|
Nigel
Cook
,
Barbara
Etschmann
,
Cristiana
Ciobanu-cook
,
Tina
Geraki
,
Daryl
Howard
,
Timothy
Williams
,
Nick
Rae
,
Allan
Pring
,
Guorong
Chen
,
Bernt
Johannessen
,
Joel
Brugger
Diamond Proposal Number(s):
[7563]
Open Access
Abstract: The distribution and substitution mechanism of Ge in the Ge-rich sphalerite from the Tres Marias Zn deposit, Mexico, was studied using a combination of techniques at micro m- to atomic scales. Trace element mapping by Laser Ablation Inductively Coupled Mass Spectrometry shows that Ge is enriched in the same bands as Fe, and that Ge-rich sphalerite also contains measurable levels of several other minor elements, including As, Pb and Tl. Micron- to nanoscale heterogeneity in the sample, both textural and compositional, is revealed by investigation using Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) combined with Synchrotron X-ray Fluorescence mapping and High-Resolution Transmission Electron Microscopy imaging of FIB-prepared samples. Results show that Ge is preferentially incorporated within Fe-rich sphalerite with textural complexity finer than that of the microbeam used for the X-ray Absorption Near Edge Structure (XANES) measurements. Such heterogeneity, expressed as intergrowths between 3C sphalerite and 2H wurtzite on [11¯0] zones, could be the result of either a primary growth process, or alternatively, polystage crystallization, in which early Fe-Ge-rich sphalerite is partially replaced by Fe-Ge-poor wurtzite. FIB-SEM imaging shows evidence for replacement supporting the latter. Transformation of sphalerite into wurtzite is promoted by (111)* twinning or lattice-scale defects, leading to a heterogeneous ZnS sample, in which the dominant component, sphalerite, can host up to ~20% wurtzite. Ge K-edge XANES spectra for this sphalerite are identical to those of the germanite and argyrodite standards and the synthetic chalcogenide glasses GeS2 and GeSe2, indicating the Ge formally exists in the tetravalent form in this sphalerite. Fe K-edge XANES spectra for the same sample indicate that Fe is present mainly as Fe2+, and Cu K-edge XANES spectra are characteristic for Cu+. Since there is no evidence for coupled substitution involving a monovalent element, we propose that Ge4+ substitutes for (Zn2+, Fe2+) with vacancies in the structure to compensate for charge balance. This study shows the utility of synchrotron radiation combined with electron beam micro-analysis in investigating low-level concentrations of minor metals in common sulfides.
|
Mar 2015
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
I18-Microfocus Spectroscopy
|
Abstract: Tuffisite veins are glass-filled fractures formed when magma fragments during degassing within the conduit. These veins form transient channels through which exsolved gases can escape from magma. The purpose of this study is to determine the extent to which chemical heterogeneity within the melt results from gas transport, and assess how this can be used to study magma degassing. Two tuffisite veins from contrasting rhyolitic eruptions at Torfajökull (Iceland) and Chaitén (Chile) were studied in detail. The tuffisite vein from Torfajökull is from a shallow dissected conduit (∼70 ka) that fed a degassed lava flow, while the sample from Chaitén was a bomb ejected during the waning phases of Plinian activity in May 2008. The results of detailed in situ chemical analyses (synchrotron XRF, FTIR, LA-ICP-MS) show that in both veins larger vesiculated fragments are enriched in volatile elements (Torfajökull: H, Li, Cl; Chaitén: Li, Cl, Cu, Zn, As, Sn, Sb) compared to the host, while the surrounding smaller particles are depleted in the Torfajökull vein (Li, Cl, Zn, Br, Rb, Pb), but enriched in the Chaitén vein (K, Cu, Zn, As, Mo, Sb, Pb). The lifespans of both veins and the fluxes of gas and particles through them can be estimated using diffusion profiles and enrichment factors. The Torfajökull vein had a longer lifespan (∼a day) and low particle velocities (∼cm/s), while the Chaitén vein was shorter lived (<1 h) with a high gas velocity (∼m/s). These differences are consistent with the contrasting eruption mechanisms (effusive vs. explosive). The amount of magma that degassed through the Chaitén vein is more than ten times the volume of the vein itself, requiring the vein to tap into pre-exsolved gas pockets. This study highlights that tuffisite veins are highly efficient gas pathways and thereby impart chemical diversity in volatile elements on the melt.
|
Aug 2013
|
|
I18-Microfocus Spectroscopy
|
Abstract: Zinc is known to play an important role in many cellular processes, and the levels of zinc are controlled by specific transporters from the ZIP (SLC39A) influx transporter group and the ZnT (SLC30A) efflux transporter group. The distribution of zinc was measured in 59 samples of invasive ductal carcinoma of breast using synchrotron radiation micro probe x-ray fluorescence facilities. The samples were formalin fixed paraffin embedded tissue micro arrays (TMAs) enabling a high throughput of samples and allowing us to correlate the distribution of trace metals with tumour cell distribution and, for the first time, important biological variables. The samples were divided into two classes, 34 oestrogen receptor positive (ER+ve) and 25 oestrogen receptor negative (ER-ve) based on quantitative immunohistochemistry assessment. The overall levels of zinc (i.e. in tumour and surrounding tissue) in the ER+ve samples were on average 60% higher than those in the ER-ve samples. The zinc levels were higher in the ER+ve tumour areas compared to the ER-ve tumour areas with the mean levels in the ER+ve samples being approximately 80% higher than the mean ER-ve levels. However, the non-tumour tissue regions of the samples contained on average the same levels of zinc in both types of breast cancers. The relative levels of zinc in tumour areas of the tissue were compared with levels in areas of non-tumour surrounding tissue. There was a significant increase in zinc in the tumour regions of the ER+ve samples compared to the surrounding regions (P < 0.001) and a non-significant increase in the ER-ve samples. When comparing the increase in zinc in the tumour regions expressed as a percentage of the surrounding non-tumour tissue zinc level in the same sample, a significant difference between the ER+ve and ER-ve samples was found (P < 0.01).
|
Jun 2009
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[684]
Abstract: X-ray absorption near-edge structure (XANES) spectroscopy was used to examine the oxidation state of Zn, Fe and Cu in 22 normal and 23 tumour regions spread over 30 formalin-fixed, paraffin-embedded tissue samples of human primary invasive breast cancer. A micro-mapping analysis of the metal distribution in the tissue was performed prior to the XANES analysis to identify and localise the metals in the tumour and normal tissue regions. The aim of this study was to identify the oxidation state of Zn, Fe and Cu in normal and tumour tissues of the breast, in order to correlate the oxidation state of these elements with the carcinogenesis process. The position of the Zn K-edge in normal and tumour tissues suggests that Zn exists in a bounded form. The shape of the Cu K-edge XANES spectra and the first derivative spectra of normal and tumour tissues shows that a significant portion of the total copper is present as Cu (I). Nevertheless, the position of the edges in the normal and tumour tissue spectra does not exclude the presence of Cu (II). The shape and position of both normal and tumour regions of the tissue suggest that they contain mixtures of Fe (II) and Fe (III) ions with a significant fraction being Fe (III). However, normal tissue regions were found to have a higher fraction of Fe (II) compared to the tumour tissues. In order to estimate the best target for therapy, more information is required about the relative abundance of Zn, Fe and Cu binding proteins, their oxidation state and their localisation at the subcellular level. Copyright © 2010 John Wiley & Sons, Ltd.
|
Aug 2010
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[1493]
Abstract: Highly alkaline (pH 12.2) chromate contaminated leachate (990 ?mol L?1) has been entering soils below a chromite ore processing residue disposal (COPR) site for over 100 years. The soil immediately beneath the waste has a pH of 11 ? 12.5, contains 0.3 ? 0.5% (w/w) chromium, and 45 ? 75% of the microbially available iron is Fe(II). Despite elevated pH, a viable microbial consortium of Firmicutes dominated iron reducers was isolated from this COPR affected soil. Soil pH and Cr concentration decrease with distance from the waste. XAS analysis of soil samples indicated that Cr is present as a mixed Cr(III)–Fe(III) oxy-hydroxide phase, suggesting that the elevated soil Cr content is due to reductive precipitation of Cr(VI) by Fe(II). Microcosm results demonstrate the capacity of COPR affected soil to abiotically remove all Cr(VI) from the leachate within 40 days. In air oxidation experiments less than 2% of the total Cr in the soil was remobilised despite significant Fe(II) oxidation. XAS analysis after air oxidation showed no change in Cr-speciation, indicating the Cr(III)-containing phase is a stable long term host for Cr. This work suggests that reductive precipitation of Cr(VI) is an effective method of contaminant immobilisation in soils where microbially produced Fe(II) is present.
|
Aug 2011
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[6303]
Abstract: Tris(8-quinolinolato)gallium(III) (1, KP46) is a very promising investigational anticancer drug. Its interaction with serum proteins, elemental distribution, and coordination in tissue were investigated with X-ray absorption (XAS) methods. Model compounds with mixed O, N, and/or S donor atoms are reported. The coordination and structure of 1 in cell culture medium (minimum essential medium, MEM) and fetal calf serum (FCS) were probed by XANES and EXAFS. The interaction of 1 with the serum proteins apotransferrin (apoTf) and human serum albumin (HSA) was addressed as well. By application of micro-XAS to tissue samples from mice treated with 1, the gallium distribution pattern was analyzed and compared to those of physiological trace elements. The complex 1 turned out to be very stable under physiological conditions, in cell culture media and in tissue samples. The coordination environment of the metal center remains intact in the presence of apoTf and HSA. The gallium distribution pattern in tumor and liver tissue revealed high similarities to the distribution patterns of Zn and Fe, minor similarities to Cu and Ni, and no similarity to Ca.
|
Jun 2012
|
|