|
C.
Monney
,
K. J.
Zhou
,
H.
Cercellier
,
Z.
Vydrova
,
M. G.
Garnier
,
G.
Monney
,
V. N.
Strocov
,
H.
Berger
,
H.
Beck
,
T.
Schmitt
,
P.
Aebi
Abstract: In high-resolution resonant inelastic x-ray scattering at the Ti L edge of the charge-density-wave system 1T-TiSe2, we observe sharp low energy loss peaks from electron-hole pair excitations developing at low temperature. These excitations are strongly dispersing as a function of the transferred momentum of light. We show that the unoccupied bands close to the Fermi level can effectively be probed in this broadband material. Furthermore, we extract the order parameter of the charge-density-wave phase from temperature-dependent measurements.
|
Jul 2012
|
|
|
Ke-jin
Zhou
,
Yao-bo
Huang
,
Claude
Monney
,
Xi
Dai
,
Vladimir N.
Strocov
,
Nan-lin
Wang
,
Zhi-guo
Chen
,
Chenglin
Zhang
,
Pengcheng
Dai
,
Luc
Patthey
,
Jeroen
Van Den Brink
,
Hong
Ding
,
Thorsten
Schmitt
Abstract: Motivated by the premise that superconductivity in iron-based superconductors is unconventional and mediated by spin fluctuations, an intense research effort has been focused on characterizing the spin-excitation spectrum in the magnetically ordered parent phases of the Fe pnictides and chalcogenides. For these undoped materials, it is well established that the spin-excitation spectrum consists of sharp, highly dispersive magnons. The fate of these high-energy magnetic modes upon sizable doping with holes is hitherto unresolved. Here we demonstrate, using resonant inelastic X-ray scattering, that optimally hole-doped superconducting Ba0.6K0.4Fe2As2 retains well-defined, dispersive high-energy modes of magnetic origin. These paramagnon modes are softer than, though as intense as, the magnons of undoped antiferromagnetic BaFe2As2. The persistence of spin excitations well into the superconducting phase suggests that the spin fluctuations in Fe-pnictide superconductors originate from a distinctly correlated spin state. This connects Fe pnictides to cuprates, for which, in spite of fundamental electronic structure differences, similar paramagnons are present.
|
Feb 2013
|
|
|
D. V.
Evtushinsky
,
A. N.
Yaresko
,
V. B.
Zabolotnyy
,
J.
Maletz
,
T. K.
Kim
,
A. A.
Kordyuk
,
M. S.
Viazovska
,
M.
Roslova
,
I.
Morozov
,
R.
Beck
,
S.
Aswartham
,
L.
Harnagea
,
S.
Wurmehl
,
H.
Berger
,
V. A.
Rogalev
,
V. N.
Strocov
,
T.
Wolf
,
N. D.
Zhigadlo
,
B.
Büchner
,
S. V.
Borisenko
Abstract: One of the most unique and robust experimental facts about iron-based superconductors is the renormalization of the electronic band dispersion by factor of 3 and more near the Fermi level. Obviously related to the electron pairing, this prominent deviation from the band theory lacks understanding. Experimentally studying the entire spectrum of the valence electrons in iron arsenides, we have found an unexpected depletion of the spectral weight in the middle of the iron-derived band, which is accompanied by a drastic increase of the scattering rate. At the same time, the measured arsenic-derived band exhibits very good agreement with theoretical calculations. We show that the low-energy Fermi velocity renormalization should be viewed as a part of the modification of the spectral function by a strong electronic interaction. Such an interaction with an energy scale of the whole d band appears to be a hallmark of many families of unconventional superconductors.
|
Aug 2017
|
|
|
L. B.
Duffy
,
N.-j.
Steinke
,
J. A.
Krieger
,
A. I.
Figueroa
,
K.
Kummer
,
T.
Lancaster
,
S. R.
Giblin
,
F. L.
Pratt
,
S. J.
Blundell
,
T.
Prokscha
,
A.
Suter
,
Sean
Langridge
,
V. N.
Strocov
,
Z.
Salman
,
G.
Van Der Laan
,
T.
Hesjedal
Abstract: Magnetic doping with transition metal ions is the most widely used approach to break time-reversal symmetry in a topological insulator (TI)—a prerequisite for unlocking the TI’s exotic potential. Recently, we reported the doping of Bi2Te3 thin films with rare-earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy-doped Bi2Te3 remained elusive.Here, we present an x-ray magnetic circular dichroism, polarized neutron reflectometry, muon-spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous, magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition-metal-doped layers. However, the introduction of some charge carriers by the Dy dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition-metal-doped topological insulators, and Dy doping should thus allow for improved TI quantum devices.
|
May 2018
|
|
|
J.
Schlappa
,
U.
Kumar
,
K. J.
Zhou
,
S.
Singh
,
M.
Mourigal
,
V. N.
Strocov
,
A.
Revcolevschi
,
L.
Patthey
,
H. M.
Ronnow
,
S.
Johnston
,
T.
Schmitt
Open Access
Abstract: One-dimensional (1D) magnetic insulators have attracted significant interest as a platform for studying quasiparticle fractionalization, quantum criticality, and emergent phenomena. The spin-1/2 Heisenberg chain with antiferromagnetic nearest neighbour interactions is an important reference system; its elementary magnetic excitations are spin-1/2 quasiparticles called spinons that are created in even numbers. However, while the excitation continuum associated with two-spinon states is routinely observed, the study of four-spinon and higher multi-spinon states is an open area of research. Here we show that four-spinon excitations can be accessed directly in Sr2CuO3 using resonant inelastic x-ray scattering (RIXS) in a region of phase space clearly separated from the two-spinon continuum. Our finding is made possible by the fundamental differences in the correlation function probed by RIXS in comparison to other probes. This advance holds promise as a tool in the search for novel quantum states and quantum spin liquids.
|
Dec 2018
|
|
|
Arian
Arab
,
Xiaoran
Liu
,
Okan
Koksal
,
Weibing
Yang
,
Ravini U.
Chandrasena
,
Srimanta
Middey
,
Mikhail
Kareev
,
Siddharth
Kumar
,
Marius-adrian
Husanu
,
Zhenzhong
Yang
,
Lin
Gu
,
Vladimir N.
Strocov
,
Tien-lin
Lee
,
Jan
Minar
,
Rossitza
Pentcheva
,
Jak
Chakhalian
,
Alexander X.
Gray
Abstract: Artificial complex-oxide heterostructures containing ultrathin buried layers grown along the pseudocubic [111] direction have been predicted to host a plethora of exotic quantum states arising from the graphene-like lattice geometry and the interplay between strong electronic correlations and band topology. To date, however, electronic-structural investigations of such atomic layers remain an immense challenge due to the shortcomings of conventional surface-sensitive probes, with typical information depths of a few Ångstroms. Here, we use a combination of bulk-sensitive soft x-ray angle-resolved photoelectron spectroscopy (SX-ARPES), hard x-ray photoelectron spectroscopy (HAXPES) and state-of-the-art first-principles calculations to demonstrate a direct and robust method for extracting momentum-resolved and angle-integrated valence-band electronic structure of an ultrathin buckled graphene-like layer of NdNiO3 confined between two 4-unit cell-thick layers of insulating LaAlO3. The momentum-resolved dispersion of the buried Ni d states near the Fermi level obtained via SX-ARPES is in excellent agreement with the first-principles calculations and establishes the realization of an antiferro-orbital order in this artificial lattice. The HAXPES measurements reveal the presence of a valence-band (VB) bandgap of 265 meV. Our findings open a promising avenue for designing and investigating quantum states of matter with exotic order and topology in a few buried layers.
|
Oct 2019
|
|
I05-ARPES
|
Su-yang
Xu
,
Nasser
Alidoust
,
Ilya
Belopolski
,
Zhujun
Yuan
,
Guang
Bian
,
Tay-rong
Chang
,
Hao
Zheng
,
Vladimir N.
Strocov
,
Daniel
Sanchez
,
Guoqing
Chang
,
Chenglong
Zhang
,
Daixiang
Mou
,
Yun
Wu
,
Lunan
Huang
,
Chi-cheng
Lee
,
Shin-ming
Huang
,
Baokai
Wang
,
Arun
Bansil
,
Horng-tay
Jeng
,
Titus
Neupert
,
Adam
Kaminski
,
Hsin
Lin
,
Shuang
Jia
,
M.
Zahid Hasan
Diamond Proposal Number(s):
[10074]
Abstract: Three types of fermions play a fundamental role in our understanding of nature: Dirac, Majorana and Weyl. Whereas Dirac fermions have been known for decades, the latter two have not been observed as any fundamental particle in high-energy physics, and have emerged as a much-sought-out treasure in condensed matter physics. A Weyl semimetal is a novel crystal whose low-energy electronic excitations behave as Weyl fermions. It has received worldwide interest and is believed to open the next era of condensed matter physics after graphene and three-dimensional topological insulators. However, experimental research has been held back because Weyl semimetals are extremely rare in nature. Here, we present the experimental discovery of the Weyl semimetal state in an inversion-symmetry-breaking single-crystalline solid, niobium arsenide (NbAs). Utilizing the combination of soft X-ray and ultraviolet photoemission spectroscopy, we systematically study both the surface and bulk electronic structure of NbAs. We experimentally observe both the Weyl cones in the bulk and the Fermi arcs on the surface of this system. Our ARPES data, in agreement with our theoretical band structure calculations, identify the Weyl semimetal state in NbAs, which provides a real platform to test the potential of Weyltronics.
|
Aug 2015
|
|
I05-ARPES
|
S. Y.
Xu
,
I.
Belopolski
,
D.
Sanchez
,
C.
Zhang
,
G.
Chang
,
C.
Guo
,
G.
Bian
,
Z.
Yuan
,
H.
Lu
,
T. R
Chang
,
P. P
Shibayev
,
Mykhaylo
Prokopovych
,
N.
Alidoust
,
H.
Zheng
,
C. C
Lee
,
S. M.
Huang
,
R.
Sankar
,
F.
Chou
,
C. H.
Hsu
,
H. T
Jeng
,
A.
Bansil
,
T.
Neupert
,
V. N.
Strocov
,
H.
Lin
,
S.
Jia
,
M. Z.
Hasan
Abstract: Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we find that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal’s surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission.
|
Nov 2015
|
|
I05-ARPES
|
Ilya
Belopolski
,
Su-yang
Xu
,
Nikesh
Koirala
,
Chang
Liu
,
Guang
Bian
,
Vladimir N.
Strocov
,
Guoqing
Chang
,
Madhab
Neupane
,
Nasser
Alidoust
,
Daniel
Sanchez
,
Hao
Zheng
,
Matthew
Brahlek
,
Victor
Rogalev
,
Timur
Kim
,
Nicholas C.
Plumb
,
Chaoyu
Chen
,
François
Bertran
,
Patrick
Le Fèvre
,
Amina
Taleb-ibrahimi
,
Maria-carmen
Asensio
,
Ming
Shi
,
Hsin
Lin
,
Moritz
Hoesch
,
Seongshik
Oh
,
M. Zahid
Hasan
Diamond Proposal Number(s):
[11742]
Abstract: Engineered lattices in condensed matter physics, such as cold-atom optical lattices or photonic crystals, can have properties that are fundamentally different from those of naturally occurring electronic crystals. We report a novel type of artificial quantum matter lattice. Our lattice is a multilayer heterostructure built from alternating thin films of topological and trivial insulators. Each interface within the heterostructure hosts a set of topologically protected interface states, and by making the layers sufficiently thin, we demonstrate for the first time a hybridization of interface states across layers. In this way, our heterostructure forms an emergent atomic chain, where the interfaces act as lattice sites and the interface states act as atomic orbitals, as seen from our measurements by angle-resolved photoemission spectroscopy. By changing the composition of the heterostructure, we can directly control hopping between lattice sites. We realize a topological and a trivial phase in our superlattice band structure. We argue that the superlattice may be characterized in a significant way by a one-dimensional topological invariant, closely related to the invariant of the Su-Schrieffer-Heeger model. Our topological insulator heterostructure demonstrates a novel experimental platform where we can engineer band structures by directly controlling how electrons hop between lattice sites.
|
Mar 2017
|
|
I05-ARPES
|
Su-yang
Xu
,
Nasser
Alidoust
,
Guoqing
Chang
,
Hong
Lu
,
Bahadur
Singh
,
Ilya
Belopolski
,
Daniel S.
Sanchez
,
Xiao
Zhang
,
Guang
Bian
,
Hao
Zheng
,
Marious-adrian
Husanu
,
Yi
Bian
,
Shin-ming
Huang
,
Chuang-han
Hsu
,
Tay-rong
Chang
,
Horng-tay
Jeng
,
Arun
Bansil
,
Titus
Neupert
,
Vladimir N.
Strocov
,
Hsin
Lin
,
Shuang
Jia
,
M. Zahid
Hasan
Open Access
Abstract: In quantum field theory, Weyl fermions are relativistic particles that travel at the speed of light and strictly obey the celebrated Lorentz symmetry. Their low-energy condensed matter analogs are Weyl semimetals, which are conductors whose electronic excitations mimic the Weyl fermion equation of motion. Although the traditional (type I) emergent Weyl fermions observed in TaAs still approximately respect Lorentz symmetry, recently, the so-called type II Weyl semimetal has been proposed, where the emergent Weyl quasiparticles break the Lorentz symmetry so strongly that they cannot be smoothly connected to Lorentz symmetric Weyl particles. Despite some evidence of nontrivial surface states, the direct observation of the type II bulk Weyl fermions remains elusive. We present the direct observation of the type II Weyl fermions in crystalline solid lanthanum aluminum germanide (LaAlGe) based on our photoemission data alone, without reliance on band structure calculations. Moreover, our systematic data agree with the theoretical calculations, providing further support on our experimental results.
|
Jun 2017
|
|