|
Abstract: Nipah and Hendra viruses are emergent paramyxoviruses, causing disease characterized by rapid onset and high mortality rates, resulting in their classification as Biosafety Level 4 pathogens. Their attachment glycoproteins are essential for the recognition of the cell-surface receptors ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3). Here we report crystal structures of both Nipah and Hendra attachment glycoproteins in complex with human EFNB2. In contrast to previously solved paramyxovirus attachment complexes, which are mediated by sialic acid interactions, the Nipah and Hendra complexes are maintained by an extensive protein-protein interface, including a crucial phenylalanine side chain on EFNB2 that fits snugly into a hydrophobic pocket on the viral protein. By analogy with the development of antivirals against sialic acid binding viruses, these results provide a structural template to target antiviral inhibition of protein-protein interactions.
|
Jan 2008
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Tomasz
Uchański
,
Simonas
Masiulis
,
Baptiste
Fischer
,
Valentina
Kalichuk
,
Uriel
López-sánchez
,
Eleftherios
Zarkadas
,
Miriam
Weckener
,
Andrija
Sente
,
Philip
Ward
,
Alexandre
Wohlkonig
,
Thomas
Zogg
,
Han
Remaut
,
James
Naismith
,
Hugues
Nury
,
Wim
Vranken
,
A. Radu
Aricescu
,
Els
Pardon
,
Jan
Steyaert
Abstract: Nanobodies are popular and versatile tools for structural biology. They have a compact single immunoglobulin domain organization, bind target proteins with high affinities while reducing their conformational heterogeneity and stabilize multi-protein complexes. Here we demonstrate that engineered nanobodies can also help overcome two major obstacles that limit the resolution of single-particle cryo-electron microscopy reconstructions: particle size and preferential orientation at the water–air interfaces. We have developed and characterized constructs, termed megabodies, by grafting nanobodies onto selected protein scaffolds to increase their molecular weight while retaining the full antigen-binding specificity and affinity. We show that the megabody design principles are applicable to different scaffold proteins and recognition domains of compatible geometries and are amenable for efficient selection from yeast display libraries. Moreover, we demonstrate that megabodies can be used to obtain three-dimensional reconstructions for membrane proteins that suffer from severe preferential orientation or are otherwise too small to allow accurate particle alignment.
|
Jan 2021
|
|
I02-Macromolecular Crystallography
|
Open Access
Abstract: Hedgehog (Hh) morphogens have fundamental roles in development, whereas dysregulation of Hh signaling leads to disease. Multiple cell-surface receptors are responsible for transducing and/or regulating Hh signals. Among these, the Hedgehog-interacting protein (Hhip) is a highly conserved, vertebrate-specific inhibitor of Hh signaling. We have solved a series of crystal structures for the human HHIP ectodomain and Desert hedgehog (DHH) in isolation, as well as HHIP in complex with DHH (HHIP-DHH) and Sonic hedgehog (Shh) (HHIP-Shh), with and without Ca(2+). The interaction determinants, confirmed by biophysical studies and mutagenesis, reveal previously uncharacterized and distinct functions for the Hh Zn(2+) and Ca(2+) binding sites-functions that may be common to all vertebrate Hh proteins. Zn(2+) makes a key contribution to the Hh - HHIP interface, whereas Ca(2+) is likely to prevent electrostatic repulsion between the two proteins, suggesting an important modulatory role. This interplay of several metal binding sites suggests a tuneable mechanism for regulation of Hh signaling.
|
Jun 2009
|
|
I02-Macromolecular Crystallography
|
Abstract: Two members of the paramyxovirus family, Nipah virus (NiV) and Hendra virus (HeV), are recent additions to a growing number of agents of emergent diseases which use bats as a natural host. Identification of ephrin-B2 and ephrin-B3 as cellular receptors for these viruses has enabled the development of immunotherapeutic reagents which prevent virus attachment and subsequent fusion. Here we present the structural analysis of the protein and carbohydrate components of the unbound viral attachment glycoprotein of NiV glycoprotein (NiV-G) at a 2.2-Å resolution. Comparison with its ephrin-B2-bound form reveals that conformational changes within the envelope glycoprotein are required to achieve viral attachment. Structural differences are particularly pronounced in the 579-590 loop, a major component of the ephrin binding surface. In addition, the 236-245 loop is rather disordered in the unbound structure. We extend our structural characterization of NiV-G with mass spectrometric analysis of the carbohydrate moieties. We demonstrate that NiV-G is largely devoid of the oligomannose-type glycans that in viruses such as human immunodeficiency virus type 1 and Ebola virus influence viral tropism and the host immune response. Nevertheless, we find putative ligands for the endothelial cell lectin, LSECtin. Finally, by mapping structural conservation and glycosylation site positions from other members of the paramyxovirus family, we suggest the molecular surface involved in oligomerization. These results suggest possible pathways of virus-host interaction and strategies for the optimization of recombinant vaccines.
|
Nov 2008
|
|
I02-Macromolecular Crystallography
|
Open Access
Abstract: The EphA4 tyrosine kinase cell surface receptor regulates an array of physiological processes and is the only currently known class A Eph receptor that binds both A and B class ephrins with high affinity. We have solved the crystal structure of the EphA4 ligand binding domain alone and in complex with (1) ephrinB2 and (2) ephrinA2. This set of structures shows that EphA4 has significant conformational plasticity in its ligand binding face. In vitro binding data demonstrate that it has a higher affinity for class A than class B ligands. Structural analyses, drawing on previously reported Eph receptor structures, show that EphA4 in isolation and in complex with ephrinA2 resembles other class A Eph receptors but on binding ephrinB2 assumes structural hallmarks of the class B Eph receptors. This interactive plasticity reveals EphA4 as a structural chameleon, able to adopt both A and B class Eph receptor conformations, and thus provides a molecular basis for EphA-type cross-class reactivity.
|
Oct 2009
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Abstract: Heparan and chondroitin sulfate proteoglycans (HSPGs and CSPGs, respectively) regulate numerous cell surface signaling events, with typically opposite effects on cell function. CSPGs inhibit nerve regeneration through receptor protein tyrosine phosphatase sigma (RPTPσ). Here we report that RPTPσ acts bimodally in sensory neuron extension, mediating CSPG inhibition and HSPG growth promotion. Crystallographic analyses of a shared HSPG-CSPG binding site reveal a conformational plasticity that can accommodate diverse glycosaminoglycans with comparable affinities. Heparan sulfate and analogs induced RPTPσ ectodomain oligomerization in solution, which was inhibited by chondroitin sulfate. RPTPσ and HSPGs colocalize in puncta on sensory neurons in culture, whereas CSPGs occupy the extracellular matrix. These results lead to a model where proteoglycans can exert opposing effects on neuronal extension by competing to control the oligomerization of a common receptor.
|
Dec 2011
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8423]
Abstract: Repulsive guidance molecule family members (RGMs) control fundamental and diverse cellular processes, including motility and adhesion, immune cell regulation, and systemic iron metabolism. However, it is not known how RGMs initiate signaling through their common cell-surface receptor, neogenin (NEO1). Here, we present crystal structures of the NEO1 RGM-binding region and its complex with human RGMB (also called dragon).
|
Jul 2013
|
|
I03-Macromolecular Crystallography
|
Kunimichi
Suzuki
,
Jonathan
Elegheert
,
Inseon
Song
,
Hiroyuki
Sasakura
,
Oleg
Senkov
,
Keiko
Matsuda
,
Wataru
Kakegawa
,
Veronica T.
Chang
,
Maura
Ferrer-ferrer
,
Eriko
Miura
,
Rahul
Kaushik
,
Masashi
Ikeno
,
Yuki
Morioka
,
Yuka
Takeuchi
,
Tatsuya
Shimada
,
Shintaro
Otsuka
,
Stoyan
Stoyanov
,
Masahiko
Watanabe
,
Kosei
Takeuchi
,
Alexander
Dityatev
,
A. Radu
Aricescu
,
Michisuke
Yuzaki
Open Access
Abstract: Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory–inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer’s disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits.
|
Aug 2020
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Veronica T
Chang
,
Ricardo A
Fernandes
,
Kristina A
Ganzinger
,
Steven F
Lee
,
Christian
Siebold
,
James
Mccoll
,
Peter
Jönsson
,
Matthieu
Palayret
,
Karl
Harlos
,
Charlotte H
Coles
,
Edith
Jones
,
Yuan
Lui
,
Elizabeth
Huang
,
Robert J C
Gilbert
,
David
Klenerman
,
A Radu
Aricescu
,
Simon J
Davis
Abstract: It has been proposed that the local segregation of kinases and the tyrosine phosphatase CD45 underpins T cell antigen receptor (TCR) triggering, but how such segregation occurs and whether it can initiate signaling is unclear. Using structural and biophysical analysis, we show that the extracellular region of CD45 is rigid and extends beyond the distance spanned by TCR-ligand complexes, implying that sites of TCR-ligand engagement would sterically exclude CD45. We also show that the formation of 'close contacts', new structures characterized by spontaneous CD45 and kinase segregation at the submicron-scale, initiates signaling even when TCR ligands are absent. Our work reveals the structural basis for, and the potent signaling effects of, local CD45 and kinase segregation. TCR ligands have the potential to heighten signaling simply by holding receptors in close contacts.
|
Mar 2016
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Jonathan
Elegheert
,
W.
Kakegawa
,
J.
Clay
,
N. F.
Shanks
,
E.
Behiels
,
K.
Matsuda
,
K.
Kohda
,
E.
Miura
,
M.
Rossmann
,
Nikolaos
Mitakidis
,
J.
Motohashi
,
Veronica T.
Chang
,
Christian
Siebold
,
Ingo H.
Greger
,
Terunaga
Nakagawa
,
M.
Yuzaki
,
A. Radu
Aricescu
Diamond Proposal Number(s):
[8423, 10627]
Abstract: Ionotropic glutamate receptor (iGluR) family members are integrated into supramolecular complexes that modulate their location and function at excitatory synapses. However, a lack of structural information beyond isolated receptors or fragments thereof currently limits the mechanistic understanding of physiological iGluR signaling. Here, we report structural and functional analyses of the prototypical molecular bridge linking postsynaptic iGluR δ2 (GluD2) and presynaptic β-neurexin 1 (β-NRX1) via Cbln1, a C1q-like synaptic organizer. We show how Cbln1 hexamers “anchor” GluD2 amino-terminal domain dimers to monomeric β-NRX1. This arrangement promotes synaptogenesis and is essential for d-serine–dependent GluD2 signaling in vivo, which underlies long-term depression of cerebellar parallel fiber–Purkinje cell (PF-PC) synapses and motor coordination in developing mice. These results lead to a model where protein and small-molecule ligands synergistically control synaptic iGluR function.
|
Jul 2016
|
|