I02-Macromolecular Crystallography
|
Rasheduzzaman
Chowdhury
,
José Ignacio
Candela-Lena
,
Mun Chiang
Chan
,
David Jeremy
Greenald
,
Kar Kheng
Yeoh
,
Ya-Min
Tian
,
Michael A.
Mcdonough
,
Anthony
Tumber
,
Nathan R.
Rose
,
Ana
Conejo-Garcia
,
Marina
Demetriades
,
Sinnakaruppan
Mathavan
,
Akane
Kawamura
,
Myung Kyu
Lee
,
Freek
Van Eeden
,
Christopher W.
Pugh
,
Peter J.
Ratcliffe
,
Christopher J.
Schofield
Abstract: The hypoxia inducible factor (HIF) system is central to the signaling of low oxygen (hypoxia) in animals. The levels of HIF-α isoforms are regulated in an oxygen-dependent manner by the activity of the HIF prolyl-hydroxylases (PHD or EGLN enzymes), which are Fe(II) and 2-oxoglutarate (2OG) dependent oxygenases. Here, we describe biochemical, crystallographic, cellular profiling, and animal studies on PHD inhibitors including selectivity studies using a representative set of human 2OG oxygenases. We identify suitable probe compounds for use in studies on thefunctional effects of PHD inhibition in cells and in animals.
|
May 2013
|
|
I02-Macromolecular Crystallography
|
Esther C. Y.
Woon
,
Anthony
Tumber
,
Akane
Kawamura
,
Lars
Hillringhaus
,
Wei
Ge
,
Nathan
Rose
,
Jerome H. Y.
Ma
,
Mun Chiang
Chan
,
Louise J.
Walport
,
Ka Hing
Che
,
Stanley S.
Ng
,
Brian D.
Marsden
,
Udo
Oppermann
,
Michael A.
Mcdonough
,
Christopher J.
Schofield
Abstract: Select an isoform: Linking of cosubstrate and substrate binding sites enables highly selective inhibiton of isoforms of human histone lysine demethylases. The results should provide a basis for the development of potent and selective JmjC inhibitors, possibly suitable for clinical use.
|
Feb 2012
|
|
I02-Macromolecular Crystallography
|
Anthony
Tumber
,
Andrea
Nuzzi
,
Edward S.
Hookway
,
Stephanie B.
Hatch
,
Srikannathasan
Velupillai
,
Catrine
Johansson
,
Akane
Kawamura
,
Pavel
Savitsky
,
Clarence
Yapp
,
Aleksandra
Szykowska
,
Na
Wu
,
Chas
Bountra
,
Claire
Strain-Damerell
,
Nicola A.
Burgess-Brown
,
Gian Filippo
Ruda
,
Oleg
Fedorov
,
Shonagh
Munro
,
Katherine S.
England
,
Radoslaw P.
Nowak
,
Christopher J.
Schofield
,
Nicholas B.
La Thangue
,
Charlotte
Pawlyn
,
Faith
Davies
,
Gareth
Morgan
,
Nick
Athanasou
,
Susanne
Müller
,
Udo
Oppermann
,
Paul E.
Brennan
Open Access
Abstract: Methylation of lysine residues on histone tail is a dynamic epigenetic modification that plays a key role in chromatin structure and gene regulation. Members of the KDM5 (also known as JARID1) sub-family are 2-oxoglutarate (2-OG) and Fe2+-dependent oxygenases acting as histone 3 lysine 4 trimethyl (H3K4me3) demethylases, regulating proliferation, stem cell self-renewal, and differentiation. Here we present the characterization of KDOAM-25, an inhibitor of KDM5 enzymes. KDOAM-25 shows biochemical half maximal inhibitory concentration values of <100 nM for KDM5A-D in vitro, high selectivity toward other 2-OG oxygenases sub-families, and no off-target activity on a panel of 55 receptors and enzymes. In human cell assay systems, KDOAM-25 has a half maximal effective concentration of ∼50 μM and good selectivity toward other demethylases. KDM5B is overexpressed in multiple myeloma and negatively correlated with the overall survival. Multiple myeloma MM1S cells treated with KDOAM-25 show increased global H3K4 methylation at transcriptional start sites and impaired proliferation.
|
Mar 2017
|
|
I02-Macromolecular Crystallography
|
Abstract: Carnitine is essential for fatty acid metabolism, but is associated with both health benefits and risks, especially heart disease. We report the identification of potent, selective and cell active inhibitors of γ-butyrobetaine hydroxylase (BBOX), which catalyses the final step of carnitine biosynthesis in animals. A crystal structure of BBOX in complex with a lead inhibitor reveals that it binds in two modes, one of which adopts an unusual ‘U-shape’ conformation stabilised by inter- and intra-molecular π-stacking interactions. Conformational changes observed on binding of the inhibitor to BBOX likely reflect those occurring in catalysis; they also rationalise the inhibition of BBOX by high levels of its substrate γ-butyrobetaine (GBB), as observed both with isolated BBOX protein and in cellular studies.
|
Feb 2014
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12346]
Open Access
Abstract: Crystallization is the bottleneck in macromolecular crystallography; even when a protein crystallises, crystal packing often influences ligand-binding and protein–protein interaction interfaces, which are the key points of interest for functional and drug discovery studies. The human hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) readily crystallises as a homotrimer, but with a sterically blocked active site. We explored strategies aimed at altering PHD2 crystal packing by protein modification and molecules that bind at its active site and elsewhere. Following the observation that, despite weak inhibition/binding in solution, succinamic acid derivatives readily enable PHD2 crystallization, we explored methods to induce crystallization without active site binding. Cyclic peptides obtained via mRNA display bind PHD2 tightly away from the active site. They efficiently enable PHD2 crystallization in different forms, both with/without substrates, apparently by promoting oligomerization involving binding to the C-terminal region. Although our work involves a specific case study, together with those of others, the results suggest that mRNA display-derived cyclic peptides may be useful in challenging protein crystallization cases.
|
Dec 2020
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Tzu-Lan
Yeh
,
Thomas m.
Leissing
,
Martine I.
Abboud
,
Cyrille C.
Thinnes
,
Onur
Atasoylu
,
James P.
Holt-Martyn
,
Dong
Zhang
,
Anthony
Tumber
,
Kerstin
Lippl
,
Christopher T.
Lohans
,
Ivanhoe K. H.
Leung
,
Helen
Morcrette
,
Ian J.
Clifton
,
Timothy D. W.
Claridge
,
Akane
Kawamura
,
Emily
Flashman
,
Xin
Lu
,
Peter J.
Ratcliffe
,
Rasheduzzaman
Chowdhury
,
Christopher W.
Pugh
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[12346, 9306]
Open Access
Abstract: Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1–3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of therapeutic interest. We describe cellular, biophysical, and biochemical studies comparing four PHD inhibitors currently in clinical trials for anaemia treatment, that describe their mechanisms of action, potency against isolated enzymes and in cells, and selectivities versus representatives of other human 2OG oxygenase subfamilies. The ‘clinical’ PHD inhibitors are potent inhibitors of PHD catalyzed hydroxylation of the HIF-α oxygen dependent degradation domains (ODDs), and selective against most, but not all, representatives of other human 2OG dependent dioxygenase subfamilies. Crystallographic and NMR studies provide insights into the different active site binding modes of the inhibitors. Cell-based results reveal the inhibitors have similar effects on the upregulation of HIF target genes, but differ in the kinetics of their effects and in extent of inhibition of hydroxylation of the N- and C-terminal ODDs; the latter differences correlate with the biophysical observations.
|
Sep 2017
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Hanna
Tarhonskaya
,
Radoslaw P.
Nowak
,
Catrine
Johansson
,
Aleksandra
Szykowska
,
Anthony
Tumber
,
Rebecca L.
Hancock
,
Pauline
Lang
,
Emily
Flashman
,
Udo
Oppermann
,
Christopher J.
Schofield
,
Akane
Kawamura
Diamond Proposal Number(s):
[11175, 10619]
Open Access
Abstract: Methylation of lysine-4 of histone H3 (H3K4men) is an important regulatory factor in eukaryotic transcription. Removal of the transcriptionally activating H3K4 methylation is catalysed by histone demethylases, including the JmjC KDM5 subfamily. The JmjC KDMs are Fe(II) and 2-oxoglutarate (2OG) dependent oxygenases, some of which are associated with cancer. Altered levels of TCA cycle intermediates, and the associated metabolites D- and L-2-hydroxyglutarate (2HG), can cause changes in chromatin methylation status. We report comprehensive biochemical, structural and cellular studies on the interaction of TCA cycle intermediates with KDM5B which is a current medicinal chemistry target for cancer. The tested TCA intermediates were poor or moderate KDM5B inhibitors, except for oxaloacetate and succinate, which were shown to compete for binding with 2OG. D- and L-2HG were moderately potent inhibitors at levels which might be relevant in cancer cells bearing isocitrate dehydrogenase mutations. Crystallographic analyses with succinate, fumarate, L-malate, oxaloacetate, pyruvate, D- and L-2HG support the kinetic studies showing competition with 2OG. An unexpected binding mode for oxaloacetate was observed in which it coordinates the active site metal via its C-4 carboxylate rather than the C-1 carboxylate/C-2 keto groups. Studies employing immunofluorescence antibody-based assays reveal no changes in H3K4me3 levels in cells ectopically overexpressing KDM5B in response to dosing with TCA cycle metabolite pro-drug esters, suggesting that the high levels of cellular 2OG may preclude inhibition. The combined results reveal the potential for KDM5B inhibition by TCA cycle intermediates, but suggest that in cells such inhibition will normally be effectively competed by 2OG.
|
Aug 2017
|
|
I03-Macromolecular Crystallography
|
Open Access
Abstract: The JmjC-domain-containing 2-oxoglutarate-dependent oxygenases catalyze protein hydroxylation and Nemethyllysine
demethylation via hydroxylation. A subgroup of this family, the JmjC lysine demethylases (JmjC KDMs) are
involved in histone modifications at multiple sites. There are conflicting reports as to the substrate selectivity of some
JmjC oxygenases with respect to KDM activities. In this study, a panel of modified histone H3 peptides was tested for
demethylation against 15 human JmjC-domain-containing proteins. The results largely confirmed known Nemethyllysine
substrates. However, the purified KDM4 catalytic domains showed greater substrate promiscuity than
previously reported (i.e., KDM4A was observed to catalyze demethylation at H3K27 as well as H3K9/K36).
Crystallographic analyses revealed that the Ne-methyllysine of an H3K27me3 peptide binds similarly to Ne-methyllysines of
H3K9me3/H3K36me3 with KDM4A. A subgroup of JmjC proteins known to catalyze hydroxylation did not display
demethylation activity. Overall, the results reveal that the catalytic domains of the KDM4 enzymes may be less selective than
previously identified. They also draw a distinction between the Ne-methyllysine demethylation and hydroxylation activities
within the JmjC subfamily. These resultswill be of use to thoseworkingon functional studies of the JmjCenzymes.
|
Jan 2015
|
|
I03-Macromolecular Crystallography
|
Radoslaw
Nowak
,
Anthony
Tumber
,
Eline
Hendrix
,
Mohammad Salik Zeya
Ansari
,
Manuela
Sabatino
,
Lorenzo
Antonini
,
Regina
Andrijes
,
Eidarus
Salah
,
Nicola
Mautone
,
Francesca Romana
Pellegrini
,
Klemensas
Simelis
,
Akane
Kawamura
,
Catrine
Johansson
,
Daniela
Passeri
,
Roberto
Pellicciari
,
Alessia
Ciogli
,
Donatella
Del Bufalo
,
Rino
Ragno
,
Mathew L.
Coleman
,
Daniela
Trisciuoglio
,
Antonello
Mai
,
Udo
Oppermann
,
Christopher J.
Schofield
,
Dante
Rotili
Diamond Proposal Number(s):
[10619]
Open Access
Abstract: MINA53 is a JmjC domain 2-oxoglutarate-dependent oxygenase that catalyzes ribosomal hydroxylation and is a target of the oncogenic transcription factor c-MYC. Despite its anticancer target potential, no small-molecule MINA53 inhibitors are reported. Using ribosomal substrate fragments, we developed mass spectrometry assays for MINA53 and the related oxygenase NO66. These assays enabled the identification of 2-(aryl)alkylthio-3,4-dihydro-4-oxoypyrimidine-5-carboxylic acids as potent MINA53 inhibitors, with selectivity over NO66 and other JmjC oxygenases. Crystallographic studies with the JmjC demethylase KDM5B revealed active site binding but without direct metal chelation; however, molecular modeling investigations indicated that the inhibitors bind to MINA53 by directly interacting with the iron cofactor. The MINA53 inhibitors manifest evidence for target engagement and selectivity for MINA53 over KDM4–6. The MINA53 inhibitors show antiproliferative activity with solid cancer lines and sensitize cancer cells to conventional chemotherapy, suggesting that further work investigating their potential in combination therapies is warranted.
|
Nov 2021
|
|
I03-Macromolecular Crystallography
|
Takashi
Miura
,
Tika R.
Malla
,
C. David
Owen
,
Anthony
Tumber
,
Lennart
Brewitz
,
Michael A.
Mcdonough
,
Eidarus
Salah
,
Naohiro
Terasaka
,
Takayuki
Katoh
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Halina
Mikolajek
,
Martin A.
Walsh
,
Akane
Kawamura
,
Christopher J.
Schofield
,
Hiroaki
Suga
Diamond Proposal Number(s):
[27088]
Open Access
Abstract: γ-Amino acids can play important roles in the biological activities of natural products; however, the ribosomal incorporation of γ-amino acids into peptides is challenging. Here we report how a selection campaign employing a non-canonical peptide library containing cyclic γ2,4-amino acids resulted in the discovery of very potent inhibitors of the SARS-CoV-2 main protease (Mpro). Two kinds of cyclic γ2,4-amino acids, cis-3-aminocyclobutane carboxylic acid (γ1) and (1R,3S)-3-aminocyclopentane carboxylic acid (γ2), were ribosomally introduced into a library of thioether-macrocyclic peptides. One resultant potent Mpro inhibitor (half-maximal inhibitory concentration = 50 nM), GM4, comprising 13 residues with γ1 at the fourth position, manifests a 5.2 nM dissociation constant. An Mpro:GM4 complex crystal structure reveals the intact inhibitor spans the substrate binding cleft. The γ1 interacts with the S1′ catalytic subsite and contributes to a 12-fold increase in proteolytic stability compared to its alanine-substituted variant. Knowledge of interactions between GM4 and Mpro enabled production of a variant with a 5-fold increase in potency.
|
May 2023
|
|