|
Abstract: Hybrid organic–inorganic halide perovskites are promising materials for thin-film solar cells. However, the toxicity and instability of best-in-class lead–halide perovskite materials make them nonideal. To combat these issues, we replaced lead with bismuth and explored the sensitivity of these new lead-free materials to the valency and bonding of their cationic organic groups. Specifically, we synthesized and characterized the materials properties and photophysical properties of hexane-1,6-diammonium bismuth pentaiodide ((HDA2+)BiI5) and compared them to an analogue containing a more volatile organic group with half the number of carbon and nitrogen atoms in the form of n-propylammonium ((PA+)xBiI3+x, where 1 < x < 3). The full crystallographic structures of (HDA2+)BiI5 and (PA+)xBiI3+x were resolved by single-crystal X-ray diffraction. (HDA2+)BiI5 was shown to be pure-phase and have a one-dimensional structure, whereas (PA+)xBiI3+x was shown to be a mix of one-dimensional and zero-dimensional phases. Structures of the materials were confirmed by synchrotron X-ray diffraction of powders. Both (HDA2+)BiI5 and (PA+)xBiI3+x exhibit steady-state photoluminescence at room temperature. Density functional theory calculations of (HDA2+)BiI5 predict electronic absorption features and a ∼2 eV bandgap that are consistent with those observed experimentally. Structure–property relationships of the materials were examined, and moisture tolerance and film quality were found to be superior for dication-containing (HDA2+)BiI5 in relation to monocation-containing (PA+)xBiI3+x. We hypothesize that these trends are in part due to a molecular bridging effect enabled by the presence of the dicationic hexanediammonium groups in (HDA2+)BiI5. Solar cells fabricated using (HDA2+)BiI5 as the photoactive layer exhibited photovoltaic action while those containing (PA+)xBiI3+x did not, suggesting that organic dicationic groups are beneficial to light-absorber morphology and ultimately solar-cell performance.
|
Feb 2019
|
|
|
Abstract: Cathode materials that have high specific energies and low manufacturing costs are vital for the scaling up of lithium-ion batteries (LIBs) as energy storage solutions. Fe-based intercalation cathodes are highly attractive because of the low cost and the abundance of raw materials. However, existing Fe-based materials, such as LiFePO4, suffer from low capacity due to the large size of the polyanions. Turning to mixed anion systems can be a promising strategy to achieve higher specific capacity. Recently, antiperovskite-structured oxysulfide Li2FeSO has been synthesized and reported to be electrochemically active. In this work, we perform an extensive computational search for iron-based oxysulfides using ab initio random structure searching (AIRSS). By performing an unbiased sampling of the Li–Fe–S–O chemical space, several oxysulfide phases have been discovered, which are predicted to be less than 50 meV/atom from the convex hull and potentially accessible for synthesis. Among the predicted phases, two anti-Ruddlesden–Popper-structured materials Li2Fe2S2O and Li4Fe3S3O2 have been found to be attractive as they have high theoretical capacities with calculated average voltages of 2.9 and 2.5 V, respectively, and their distances to hull are less than 5 meV/atom. By performing nudged-elastic band calculations, we show that the Li-ion transport in these materials takes place by hopping between the nearest neighboring sites with low activation barriers between 0.3 and 0.5 eV. The richness of materials yet to be synthesized in the Li–Fe–S–O phase field illustrates the great opportunity in these mixed anion systems for energy storage applications and beyond.
|
Jan 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[15151]
Abstract: Mixed and doped metal oxides are excellent candidates for commercial energy applications such as batteries, supercapacitors, solar cells and photocatalysis due to their activity, stability, tailorable band edge and bandgaps, and low cost. However, the routes commonly employed in their synthesis present synthetic bottlenecks with reliance on sacrificial materials, the use of high temperatures, long reaction times, and little ability to control morphology, thus compromising their scale-up. Herein, we present the single pot, electrochemical synthesis of high surface area, doped metal titanate nanostructures, including Na2Ti3O7 (NTO), 25 wt.% Sn:NTO, 5 wt.% Fe:NTO and 3 wt.% Cu:NTO. The synergic use of the cathodic corrosion method with suspended droplet alloying (SDA) led to materials with excellent homogeneity, presenting a promising route for the screening, production and discovery of electroactive materials. As proof of concept of the synthetic control and impact on reactivity, we found that the photoanodic oxygen evolution activity of the nanomaterials was adversely affected by Fe and Sn doping into NTO while Cu doping, at 3 wt.% displayed significant improvement. This work demonstrates the ability of the cathodic corrosion method to obtain compositionally- and structurally- controlled mixed-metal oxides in a rapid fashion, thus creating new opportunities in the field of materials engineering and the systematic study of compositional gradients on the (photo)electrochemical performance of metal oxide nanoparticles.
|
Sep 2018
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[14239]
Abstract: Increasing dependence on rechargeable batteries for energy storage calls for the improvement of energy density of batteries. Toward this goal, introduction of positive electrode materials with high voltage and/or high capacity is in high demand. The use of oxygen chemistry in lithium and sodium layered oxides has been of interest to achieve high capacity. Nevertheless, a complete understanding of oxygen-based redox processes remains elusive especially in sodium ion batteries. Herein, a novel P3-type Na0.67Ni0.2Mn0.8O2, synthesized at low temperature, exhibits oxygen redox activity in high potentials. Characterization using a range of spectroscopic techniques reveals the anionic redox activity is stabilized by the reduction of Ni, because of the strong Ni 3d–O 2p hybridization states created during charge. This observation suggests that different route of oxygen redox processes occur in P3 structure materials, which can lead to the exploration of oxygen redox chemistry for further development in rechargeable batteries.
|
Jan 2020
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[14239]
Abstract: Lithium-rich layered oxides and sodium layered oxides represent attractive positive electrode materials exhibiting excess capacity delivered by additional oxygen redox activity. However, structural degradation in the bulk and detrimental reactions with the electrolyte on the surface often occur, leading to limited reversibility of oxygen redox processes. Here we present the properties of P3-type Na0.67Mg0.2Mn0.8O2 synthesized under both air and oxygen. Both materials exhibit stable cycling performance in the voltage range 1.8-3.8 V where the Mn3+/Mn4+ redox couple entirely dominates the electrochemical reaction. Oxygen redox activity is triggered for both compounds in the wider voltage window 1.8-4.3 V with typical large voltage hysteresis from non-bonding O 2p states generated by substituted Mg. Interestingly, for the compound prepared under oxygen, an additional reversible oxygen redox activity is shown with exceptionally small voltage hysteresis (20 mV). The presence of vacancies in the transition metal layers is shown to play a critical role not only in forming unpaired O 2p states independent of substituted elements but also in stabilising the P3 structure during charge with reduced structural transformation to the O’3 phase at the end of discharge. This study reveals the important role of vacancies in P3-type sodium layered oxides to increase energy density using both cationic and anionic redox processes.
|
Sep 2020
|
|
B18-Core EXAFS
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
V.
Celorrio
,
D. J.
Fermin
,
L.
Calvillo
,
A.
Leach
,
H.
Huang
,
G.
Granozzi
,
J. A.
Alonso
,
A.
Aguadero
,
R. M.
Pinacca
,
A. E.
Russell
,
D.
Tiwari
Diamond Proposal Number(s):
[10306, 15151, 16479]
Abstract: Oxygen electrocatalysis at transition metal oxides is one of the key challenges underpinning electrochemical energy conversion systems, involving a delicate interplay of the bulk electronic structure and surface coordination of the active sites. In this work, we investigate for the first time the structure–activity relationship of A2RuMnO7 (A = Dy3+, Ho3+, and Er3+) nanoparticles, demonstrating how orbital mixing of Ru, Mn, and O promotes high density of states at the appropriate energy range for oxygen electrocatalysis. The bulk structure and surface composition of these multicomponent pyrochlores are investigated by high-resolution transmission electron microscopy, X-ray diffraction, X-ray absorption spectroscopy, X-ray emission spectroscopy (XES), and X-ray photoemission spectroscopy (XPS). The materials exhibit high phase purity (cubic fcc with a space group Fd3̅m) in which variations in M–O bonds length are less than 1% upon replacing the A-site lanthanide. XES and XPS show that the mean oxidation state at the Mn-site as well as the nanoparticle surface composition was slightly affected by the lanthanide. The pyrochlore nanoparticles are significantly more active than the binary RuO2 and MnO2 toward the 4-electron oxygen reduction reaction in alkaline solutions. Interestingly, normalization of kinetic parameters by the number density of electroactive sites concludes that Dy2RuMnO7 shows twice higher activity than benchmark materials such as LaMnO3. Analysis of the electrochemical profiles supported by density functional theory calculations reveals that the origin of the enhanced catalytic activity is linked to the mixing of Ru and Mn d-orbitals and O p-orbitals at the conduction band which strongly overlap with the formal redox energy of O2 in solution. The activity enhancement strongly manifests in the case of Dy2RuMnO7 where the Ru/Mn ratio is closer to 1 in comparison with the Ho3+ and Er3+ analogs. These electronic effects are discussed in the context of the Gerischer formalism for electron transfer at the semiconductor/electrolyte junctions.
|
Jan 2021
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[17223]
Abstract: Nanoscale morphology has been established as one of the controlling factors in the device performance of bulk heterojunction polymer solar cells. We report in this work morphology changes in both lateral and vertical directions in PffBT4T-2OD:PC71BM solar cells, as well as their effects on device performance. Thermal annealing was found to increase the crystallinity of PffBT4T-2OD and domain size of PC71BM clusters without any observable impact on vertical component redistribution, whilst methanol rinsing reduces the crystallinity of PffBT4T-2OD, encourages the migration of PC71BM towards the mixed polymer-rich phase as well as towards the film surface on both PEDOT:PSS and TiO2 substrates. The polymer-rich surface region in vacuum- and thermal annealing- treated conventional devices obstructs electron injection towards the cathode, and reduces the maximum achievable device efficiency, whilst this polymer-rich surface region is beneficial in the inverted devices. However, although a PC71BM-rich region will locate at the cathode or anode interface upon methanol rinsing treatment in conventional and inverted devices respectively, holes can still be effectively injected from both sides the device to ensure effective charge transport, as supported by a number of optoelectronic property investigations.
|
Jun 2018
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[15487]
Abstract: The working electrode of a dye-sensitized solar cell (DSSC) consists of dye molecules adsorbed onto nanoparticles of a semiconductor such as TiO2. A reliable prediction of the DSSC photovoltaic performance of a given dye requires in-depth knowledge about the precise structure of the dye···TiO2 interface. X-ray reflectometry (XRR) and grazing-incidence small angle X-ray scattering (GISAXS) are herein employed to determine the dye···TiO2 interfacial structure and associated dye aggregation behavior of three high-performance DSSC dyes: an organic metal-free dye, MK-2, and the two archetypal ruthenium-based organometallic dyes, N3, and N749 (Black Dye). Results show that all three dyes form nanoaggregates in dye···TiO2 interfaces. We determine the dye nanoaggregate separations, sizes, distribution densities and the extent of short-range order within each dye self-assembly in the longitudinal and lateral directions. Dye···TiO2 composites fabricated using dye solutions of varying concentrations are analyzed. We find that nanoaggregates of the three dyes are separated by several hundred nanometers (158-203 nm) in dye···TiO2 interfaces that have been fabricated using concentrated dye solutions (0.5 mM or 1.0 mM). MK-2 and N749 dyes also display smaller inter-particle separations. Dye nanoparticle diameters are of the order of 156-198 nm, sizes that are comparable to the largest inter-particle separations. Thus, no extraneous dye particles can be fitted into gaps between particles, so the dye self-assembly is saturated. Self-assemblies of all three dyes exhibit both lateral and longitudinal short-range order; N3 displays a particularly short coherence length along the TiO2 surface, with extensive structured disorder along the longitudinal direction. The operation of DSSC working electrodes would therefore seem to be dependent on a dye self-assembly that may exhibit several levels of structural granularity and dye aggregation effects.
|
Dec 2019
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[14937]
Open Access
Abstract: In this study in situ wide angle X-ray scattering (WAXS) has been measured during the spin coating process used to make the precursor films required for the formation of thin films of perovskite. A customized hollow axis spin coater was developed to permit the scattered X-rays to be collected in transmission geometry during the deposition process. Spin coating is the technique most commonly used in laboratories to make thin perovskite films. The dynamics of spin casting MAPbI3-xClx and FAPbI3-xClx films have been investigated and compared to investigate the differences between the dynamics of MAPbI3-xClx and FAPbI3-xClx film formation. In particular we focus on the crystallization dynamics of the precursor film formation. When casting MAPbI3-xClx we observed relatively fast 1D crystallization of the intermediate product MA2PbI3Cl. There was an absence of the desired perovskite phase formed directly; it only appeared after an annealing step which converted the MA2PbI3Cl to MAPbI3. In contrast, slower crystallization via a 3D precursor was observed for FAPbI3-xClx film formation compared to MAPbI3-xClx. Another important finding was that some FAPbI3-xClx perovskite was generated directly during spin casting before annealing. These findings indicate that there are significant differences between the crystallization pathways for these two perovskite materials. These are likely to explain the differences in the lifetime of the resulting perovskite solar cell devices produced using FA and MA cations.
|
Jun 2020
|
|
I09-Surface and Interface Structural Analysis
|
Andrew J.
Naylor
,
Ida
Kallquist
,
David
Peralta
,
Jean-Frederic
Martin
,
Adrien
Boulineau
,
Jean-Francois
Colin
,
Christian
Baur
,
Johann
Chable
,
Maximilian
Fichtner
,
Kristina
Edstrom
,
Maria
Hahlin
,
Daniel
Brandell
Diamond Proposal Number(s):
[20870]
Open Access
Abstract: Promising theoretical capacities and high voltages are offered by Li-rich disordered rocksalt oxyfluoride materials as cathodes in lithium ion batteries. However, as has been discovered for many other Li-rich materials, the oxyfluorides suffer from extensive surface degradation, leading to severe capacity fading. In the case of Li2VO2F, we have previously determined this to be a result of detrimental reactions between an unstable surface layer and the organic electrolyte. Herein, we present the protection of Li2VO2F particles with AlF3 surface modification, resulting in a much enhanced capacity retention over 50 cycles. While the specific capacity for the untreated material drops below 100 mA h g-1 after only 50 cycles, the treated materials retain almost 200 mA h g-1. Photoelectron spectroscopy depth profiling confirms the stabilisation of the active material surface by the surface modification and reveals its suppression of electrolyte decomposition.
|
May 2020
|
|