I02-Macromolecular Crystallography
|
Karen
Nolan
,
Jeremy R.
Doncaster
,
Mark
Dunstan
,
Katherine A.
Scott
,
A. David
Frenkel
,
David
Siegel
,
David
Ross
,
John
Barnes
,
Colin
Levy
,
Roger C.
Whitehead
,
Ian J.
Stratford
,
Richard A.
Bryce
,
David
Leys
Abstract: The synthesis is reported here of two novel series of inhibitors of human NAD(P)H quinone oxidoreductase-1 (NQO1), an enzyme overexpressed in several types of tumor cell. The first series comprises substituted symmetric dicoumarol analogues; the second series contains hybrid compounds where one 4-hydroxycoumarin system is replaced by a different aromatic moiety. Several compounds show equivalent or improved NQO1 inhibition over dicoumarol, both in the presence and in the absence of added protein. Further, correlation is demonstrated between the ability of these agents to inhibit NQO1 and computed binding affinity. We have solved the crystal structure of NQO1 complexed to a hybrid compound and find good agreement with the in silico model. For both MIA PaCa-2 pancreatic tumor cells and HCT116 colon cancer cells, dicoumarol shows the greatest toxicity of all compounds. Thus, we provide a computational, synthetic, and biological platform to generate competitive NQO1 inhibitors with superior pharmacological properties to dicoumarol. This will allow a more definitive study of NQO1 activity in cells, in particular, its drug activating/detoxifying properties and ability to modulate oncoprotein stability.
|
Nov 2009
|
|
I04-Macromolecular Crystallography
|
Open Access
Abstract: Post-translational modification of proteins by poly(ADP-ribosyl)ation regulates many cellular pathways that are critical for genome stability, including DNA repair, chromatin structure, mitosis and apoptosis1. Poly(ADP-ribose) (PAR) is composed of repeating ADP-ribose units linked via a unique glycosidic ribose–ribose bond, and is synthesized from NAD by PAR polymerases1, 2. PAR glycohydrolase (PARG) is the only protein capable of specific hydrolysis of the ribose–ribose bonds present in PAR chains; its deficiency leads to cell death3, 4. Here we show that filamentous fungi and a number of bacteria possess a divergent form of PARG that has all the main characteristics of the human PARG enzyme. We present the first PARG crystal structure (derived from the bacterium Thermomonospora curvata), which reveals that the PARG catalytic domain is a distant member of the ubiquitous ADP-ribose-binding macrodomain family5, 6. High-resolution structures of T. curvata PARG in complexes with ADP-ribose and the PARG inhibitor ADP-HPD, complemented by biochemical studies, allow us to propose a model for PAR binding and catalysis by PARG. The insights into the PARG structure and catalytic mechanism should greatly improve our understanding of how PARG activity controls reversible protein poly(ADP-ribosyl)ation and potentially of how the defects in this regulation are linked to human disease.
|
Sep 2011
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[7146]
Abstract: Poly(ADP-ribosyl)ation is a reversible post-translational protein modification involved in the regulation of a number of cellular processes including DNA repair, chromatin structure, mitosis, transcription, checkpoint activation, apoptosis and asexual development. The reversion of poly(ADP-ribosyl)ation is catalysed by poly(ADP-ribose) (PAR) glycohydrolase (PARG), which specifically targets the unique PAR (1′′-2′) ribose–ribose bonds. Here we report the structure and mechanism of the first canonical PARG from the protozoan Tetrahymena thermophila. In addition, we reveal the structure of T. thermophila PARG in a complex with a novel rhodanine-containing mammalian PARG inhibitor RBPI-3. Our data demonstrate that the protozoan PARG represents a good model for human PARG and is therefore likely to prove useful in guiding structure-based discovery of new classes of PARG inhibitors.
|
Jun 2012
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8997]
Open Access
Abstract: Ligand-dependent control of gene expression is essential for gene functional analysis, target validation, protein production, and metabolic engineering. However, the expression tools currently available are difficult to transfer between species and exhibit limited mechanistic diversity. Here we demonstrate how the modular architecture of purine riboswitches can be exploited to develop orthogonal and chimeric switches that are transferable across diverse bacterial species, modulating either transcription or translation, to provide tunable activation or repression of target gene expression, in response to synthetic non-natural effector molecules. Our novel riboswitchligand pairings are shown to regulate physiologically important genes required for bacterial motility in Escherichia coli and cell morphology in Bacillus subtilis. These findings are relevant for future gene function studies and antimicrobial target validation, while providing new modular and orthogonal regulatory components for deployment in synthetic biology regimes.
|
Jul 2014
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8997]
Open Access
Abstract: Organohalide chemistry underpins many industrial and agricultural processes, and a large proportion of environmental pollutants are organohalides1. Nevertheless, organohalide chemistry is not exclusively of anthropogenic origin, with natural abiotic and biological processes contributing to the global halide cycle2, 3. Reductive dehalogenases are responsible for biological dehalogenation in organohalide respiring bacteria4, 5, with substrates including polychlorinated biphenyls or dioxins6, 7. Reductive dehalogenases form a distinct subfamily of cobalamin (B12)-dependent enzymes that are usually membrane associated and oxygen sensitive, hindering detailed studies8, 9, 10, 11, 12. Here we report the characterization of a soluble, oxygen-tolerant reductive dehalogenase and, by combining structure determination with EPR (electron paramagnetic resonance) spectroscopy and simulation, show that a direct interaction between the cobalamin cobalt and the substrate halogen underpins catalysis. In contrast to the carboncobalt bond chemistry catalysed by the other cobalamin-dependent subfamilies13, we propose that reductive dehalogenases achieve reduction of the organohalide substrate via halogencobalt bond formation. This presents a new model in both organohalide and cobalamin (bio)chemistry that will guide future exploitation of these enzymes in bioremediation or biocatalysis.
|
Oct 2014
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[7146, 8997]
Open Access
Abstract: O-Demethylation by acetogenic or organohalide-respiring bacteria leads to the formation of methyltetrahydrofolate from aromatic methyl ethers. O-Demethylases, which are cobalamin-dependent, three-component enzyme systems, catalyse methyl-group transfers from aromatic methyl ethers to tetrahydrofolate via methylcobalamin intermediates. In this study, crystal structures of the tetrahydrofolate-binding methyltransferase module from a Desulfitobacterium hafniense DCB-2 O-demethylase were determined both in complex with tetrahydrofolate and the product methyltetrahydrofolate. While these structures are similar to previously determined methyltransferase structures, the position of key active-site residues is subtly altered. A strictly conserved Asn is displaced to establish a putative proton-transfer network between the substrate N5 and solvent. It is proposed that this supports the efficient catalysis of methyltetrahydrofolate formation, which is necessary for efficient O-demethylation.
|
Sep 2015
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8997, 12788]
Open Access
Abstract: Queuosine (Q) is a hypermodified RNA base that replaces guanine in the wobble positions of 5prime-GUN-3prime tRNA molecules. Q is exclusively made by bacteria, and the corresponding queuine base is a micronutrient salvaged by eukaryotic species. The final step in Q biosynthesis is the reduction of the epoxide precursor, epoxyqueuosine, to yield the Q cyclopentene ring. The epoxyqueuosine reductase responsible, QueG, shares distant homology with the cobalamin-dependent reductive dehalogenase (RdhA), however the role played by cobalamin in QueG catalysis has remained elusive. We report the solution and structural characterization of Streptococcus thermophilus QueG, revealing the enzyme harbours a redox chain consisting of two [4Fe-4S] clusters and a cob(II)alamin in the base-off form, similar to RdhAs. In contrast to the shared redox chain architecture, the QueG active site shares little homology with RdhA, with the notable exception of a conserved Tyr that is proposed to function as a proton donor during reductive dehalogenation. Docking of an epoxyqueuosine substrate suggests the QueG active site places the substrate cyclopentane moiety in close proximity of the cobalt. Both the Tyr and a conserved Asp are implicated as proton donors to the epoxide leaving group. This suggests that, in contrast to the unusual carbon-halogen bond chemistry catalyzed by RdhAs, QueG acts via Co-C bond formation. Our study establishes the common features of Class III cobalamin-dependent enzymes, and reveal an unexpected diversity in the reductive chemistry catalyzed by these enzymes.
|
Sep 2015
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8997]
Open Access
Abstract: Flavin-dependent halogenase (Fl-Hal) enzymes have been shown to halogenate a range of synthetic as well as natural aromatic compounds. The exquisite regioselectively of Fl-Hal enzymes can provide halogenated building blocks which are inaccessible using standard halogenation chemistries. Consequently, Fl-Hal are potentially useful biocatalysts for the chemoenzymatic synthesis of pharmaceuticals and other valuable products, which are derived from haloaromatic precursors. However, the application of Fl-Hal enzymes, in vitro, has been hampered by their poor catalytic activity and lack of stability. To overcome these issues, we identified a thermophilic tryptophan halogenase (Th-Hal), which has significantly improved catalytic activity and stability, compared with other Fl-Hal characterised to date. When used in combination with a thermostable flavin reductase, Th-Hal can efficiently halogenate a number of aromatic substrates. X-ray crystal structures of Th-Hal, and the reductase partner (Th-Fre), provide insights into the factors that contribute to enzyme stability, which could guide the discovery and engineering of more robust and productive halogenase biocatalysts.
|
Sep 2016
|
|
B21-High Throughput SAXS
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12788]
Abstract: Carboxylic acid reductase (CAR) catalyzes the ATP- and NADPH-dependent reduction of carboxylic acids to the corresponding aldehydes. The enzyme is related to the nonribosomal peptide synthetases, consisting of an adenylation domain fused via a peptidyl carrier protein (PCP) to a reductase termination domain. Crystal structures of the CAR adenylation–PCP didomain demonstrate that large-scale domain motions occur between the adenylation and thiolation states. Crystal structures of the PCP–reductase didomain reveal that phosphopantetheine binding alters the orientation of a key Asp, resulting in a productive orientation of the bound nicotinamide. This ensures that further reduction of the aldehyde product does not occur. Combining crystallography with small-angle X-ray scattering (SAXS), we propose that molecular interactions between initiation and termination domains are limited to competing PCP docking sites. This theory is supported by the fact that (R)-pantetheine can support CAR activity for mixtures of the isolated domains. Our model suggests directions for further development of CAR as a biocatalyst.
|
Jul 2017
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9887]
Open Access
Abstract: The suite of biological catalysts found in Nature has the potential to contribute immensely to scientific advancements, ranging from industrial biotechnology to innovations in bioenergy and medical intervention. The endeavour to obtain a catalyst of choice is, however, wrought with challenges. Herein we report the design of a structure-based annotation system for the identification of functionally similar enzymes from diverse sequence backgrounds. Focusing on an enzymatic activity with demonstrated synthetic and therapeutic relevance, five new phenylalanine ammonia lyase (PAL) enzymes were discovered and characterised with respect to their potential applications. The variation and novelty of various desirable traits seen in these previously uncharacterised enzymes demonstrates the importance of effective sequence annotation in unlocking the potential diversity that Nature provides in the search for tailored biological tools. This new method has commercial relevance as a strategy for assaying the ‘evolvability’ of certain enzyme features, thus streamlining and informing protein engineering efforts.
|
Oct 2017
|
|