B18-Core EXAFS
|
Diamond Proposal Number(s):
[10306]
Abstract: Monometallic and bimetallic tin-containing framework architectures have been prepared by hydrothermal methods. Structural and spectroscopic techniques were used to probe the nature of the solid-acid sites, at the molecular level, using a combination of XRD, DR UV-Vis, solid state MAS NMR (119Sn, 27Al and 31P) and XAFS. The nature and strength of the solid-acid sites were experimentaly probed by FT-IR spectroscopy using CD3CN as a probe molecule. To elucidate further the local-structure, the structural characteristics of the Sn sites were probed using DFT calculations, with a view to rationalising the experimental findings. These detailed structural and spectroscopic studies revealed the presence of multiple Sn environments, with the monometallic SnAlPO-5 catalyst displaying a greater number of tetrahedral Sn(IV) active centres. These framework Sn(IV) centres generated stong Lewis acid sites, when compared with their bimetallic Co-Sn analogue, thereby affording attractive possibilities for modulating catalytic reactivity.
|
Mar 2016
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[10306]
Open Access
Abstract: The interaction of CO with an attapulgite-supported Cu(II)Cl2 catalyst has been examined in a micro-reactor arrangement. CO exposure to the dried, as-received catalyst at elevated temperatures leads to the formation of CO2 as the only identifiable product. However, phosgene production can be induced by a catalyst pre-treatment where the supported Cu(II)Cl2 sample is exposed to a diluted stream of chlorine. Subsequent CO exposure at 370C then leads to phosgene production. In order to investigate the origins of this atypical set of reaction characteristics, a series of x-ray absorption experiments were performed that were supplemented by DFT calculations. XANES measurements establish that at the elevated temperatures connected with phosgene formation, the catalyst is comprised of Cu+ and a small amount of Cu2+. Moreover, the data show that unique to the chlorine pre-treated sample, CO exposure at elevated temperature results in a short-lived oxidation of the copper. On the basis of calculated CO adsorption energies, DFT calculations indicate that a mixed Cu+/Cu2+ catalyst is required to support CO chemisorption.
|
Feb 2018
|
|
B18-Core EXAFS
|
Antonis M.
Messinis
,
Stephen L. J.
Luckham
,
Peter P.
Wells
,
Diego
Gianolio
,
Emma K.
Gibson
,
Harry M.
O’brien
,
Hazel A.
Sparkes
,
Sean A.
Davis
,
June
Callison
,
David
Elorriaga
,
Oscar
Hernandez-Fajardo
,
Robin B.
Bedford
Diamond Proposal Number(s):
[15151]
Abstract: Iron-catalysed cross-coupling is undergoing explosive development, but mechanistic understanding lags far behind synthetic methodology. Here, we find that the activity of iron–diphosphine pre-catalysts in the Negishi coupling of benzyl halides is strongly dependent on the diphosphine, but the ligand does not appear to be coordinated to the iron during turnover. This was determined using time-resolved in operando X-ray absorption fine structure spectroscopy employing a custom-made flow cell and confirmed by 31P NMR spectroscopy. While the diphosphine ligands tested are all able to coordinate to iron(ii), in the presence of excess zinc(ii)—as in the catalytic reaction—they coordinate predominantly to the zinc. Furthermore, combined synthetic and kinetic investigations implicate the formation of a putative mixed Fe–Zn(dpbz) species before the rate-limiting step of catalysis. These unexpected findings may not only impact the field of iron-catalysed Negishi cross-coupling, but potentially beyond to reactions catalysed by other transition metal/diphosphine complexes.
|
Dec 2018
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[10306]
Open Access
Abstract: Sustainable technologies require both renewable feedstocks and catalysts that are able to direct their conversion to specific products. We establish a structure-activity relationship for the aqueous phase reforming of glycerol over 2% Pt/Al2O3 catalysts, whereby the reaction pathway can be controlled to produce either hydrogen or 1,2-propanediol as the main product. Using the colloidal synthesis method, the reduction temperature was altered to produce Pt nanoparticle catalysts supported on Al2O3 with varying Pt particle size. The catalytic activity of the samples for the APR of glycerol resulted in a higher conversion of glycerol (34%) for the larger Pt particle size of ∼3.5 nm, producing the liquid 1,2-propanediol as the major product with a yield of 12.5%, whereas smaller particles of ∼2.2 nm gave hydrogen as the main product (5.5% yield). This work demonstrates how the APR of glycerol can be tuned to yield both valuable liquid and gas products using tailored Pt nanoparticles.
|
Dec 2018
|
|
B07-C-Versatile Soft X-ray beamline: Ambient Pressure XPS and NEXAFS
B18-Core EXAFS
E01-JEM ARM 200CF
|
Rosa
Arrigo
,
Simone
Gallarati
,
Manfred E.
Schuster
,
Jake
Seymour
,
Diego
Gianolio
,
Ivan
Da Silva
,
June
Callison
,
Haosheng
Feng
,
John E.
Proctor
,
Pilar
Ferrer
,
Federica
Venturini
,
Dave
Grinter
,
Georg
Held
Open Access
Abstract: Unsupported and SiO 2 ‐supported Ni nanoparticles (NPs), were synthesised via hot‐injection colloidal route using oleylamine (OAm) and trioctylphosphine (TOP) as reducing and protective agents, respectively. By adopting a multi‐length scale structural characterization, it was found that by changing equivalents of OAM and TOP not only the size of the nanoparticles is affected but also the Ni electronic structure. The synthetized NPs were modified with ( R , R )‐tartaric acid (TA) and investigated in the asymmetric hydrogenation of methyl acetoacetate to chiral methyl‐3‐hydroxy butyrate. The comparative analysis of structure and catalytic performance for the synthetized catalysts has enabled us to identify a Ni metallic active surface, whereby the activity increases with the size of the metallic domains. Conversely, at the high conversion obtained for the unsupported NPs there was no impact of particle size on the selectivity. ( R )‐selectivity was very high only on catalysts containing positively charged Ni species such as over the SiO 2 ‐supported NiO NPs. This work shows that the chiral modification of metallic Ni NPs with TA is insufficient to maintain high selectivity towards the ( R )‐enantiomer at long reaction time and provide guidance for the engineering of long‐term stable enantioselective catalysts.
|
Dec 2019
|
|
B18-Core EXAFS
|
Bingqiao
Xie
,
Roong Jien
Wong
,
Tze Hao
Tan
,
Michael
Higham
,
Emma K.
Gibson
,
Donato
Decarolis
,
June
Callison
,
Kondo-Francois
Aguey-Zinsou
,
Michael
Bowker
,
C. Richard A.
Catlow
,
Jason
Scott
,
Rose
Amal
Diamond Proposal Number(s):
[19850]
Open Access
Abstract: Although photoexcitation has been employed to unlock the low-temperature equilibrium regimes of thermal catalysis, mechanism underlining potential interplay between electron excitations and surface chemical processes remains elusive. Here, we report an associative zinc oxide band-gap excitation and copper plasmonic excitation that can cooperatively promote methanol-production at the copper-zinc oxide interfacial perimeter of copper/zinc oxide/alumina (CZA) catalyst. Conversely, selective excitation of individual components only leads to the promotion of carbon monoxide production. Accompanied by the variation in surface copper oxidation state and local electronic structure of zinc, electrons originating from the zinc oxide excitation and copper plasmonic excitation serve to activate surface adsorbates, catalysing key elementary processes (namely formate conversion and hydrogen molecule activation), thus providing one explanation for the observed photothermal activity. These observations give valuable insights into the key elementary processes occurring on the surface of the CZA catalyst under light-heat dual activation.
|
Mar 2020
|
|
B18-Core EXAFS
E01-JEM ARM 200CF
E02-JEM ARM 300CF
I11-High Resolution Powder Diffraction
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Liqun
Kang
,
Bolun
Wang
,
Qiming
Bing
,
Michal
Zalibera
,
Robert
Büchel
,
Ruoyu
Xu
,
Qiming
Wang
,
Yiyun
Liu
,
Diego
Gianolio
,
Chiu C.
Tang
,
Emma K.
Gibson
,
Mohsen
Danaie
,
Christopher
Allen
,
Ke
Wu
,
Sushila
Marlow
,
Ling-Dong
Sun
,
Qian
He
,
Shaoliang
Guan
,
Anton
Savitsky
,
Juan J.
Velasco-Vélez
,
June
Callison
,
Christopher W. M.
Kay
,
Sotiris E.
Pratsinis
,
Wolfgang
Lubitz
,
Jing-Yao
Liu
,
Feng Ryan
Wang
Diamond Proposal Number(s):
[15151, 15763, 16966, 17377, 19072, 19246, 20939, 17559, 24285, 19318, 19850]
Open Access
Abstract: Supported atomic metal sites have discrete molecular orbitals. Precise control over the energies of these sites is key to achieving novel reaction pathways with superior selectivity. Here, we achieve selective oxygen (O2) activation by utilising a framework of cerium (Ce) cations to reduce the energy of 3d orbitals of isolated copper (Cu) sites. Operando X-ray absorption spectroscopy, electron paramagnetic resonance and density-functional theory simulations are used to demonstrate that a [Cu(I)O2]3− site selectively adsorbs molecular O2, forming a rarely reported electrophilic η2-O2 species at 298 K. Assisted by neighbouring Ce(III) cations, η2-O2 is finally reduced to two O2−, that create two Cu–O–Ce oxo-bridges at 453 K. The isolated Cu(I)/(II) sites are ten times more active in CO oxidation than CuO clusters, showing a turnover frequency of 0.028 ± 0.003 s−1 at 373 K and 0.01 bar PCO. The unique electronic structure of [Cu(I)O2]3− site suggests its potential in selective oxidation.
|
Aug 2020
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[198590]
Open Access
Abstract: The aqueous phase reforming of glycerol, to hydrogen, alkanes and liquid phase dehydration/dehydrogenation products, was studied over a series of 1 wt% Pt/LaMO3 (where M = Al, Cr, Mn, Fe, Co, Ni) catalysts and compared to a standard 1 wt% Pt/γ-Al2O3 catalyst. The sol–gel combustion synthesis of lanthanum-based perovskites LaMO3 produced pure phase perovskites with surface areas of 8–18 m2g−1. Glycerol conversions were higher than the Pt/γ-Al2O3 (10%) for several perovskite supported catalysts, with the highest being for Pt/LaNiO3 (19%). Perovskite-based catalysts showed reduced alkane formation and significantly increased lactic acid formation compared to the standard catalyst. However, most of the perovskite materials undergo phase separation to LaCO3OH and respective M site oxides with Pt particle migration. The exception being the LaCrO3 support which was found to remain structurally stable. Catalytic performance remained stable over several cycles, for catalysts M = Al, Cr and Ni, despite phase separation of some of these materials. Materials where M site leaching into solution was observed (M = Mn and Co), were found to be catalytically unstable, which was hypothesised to be due to significant loss in support surface area and uncontrolled migration of Pt to the remaining support surface. In the case of Pt/LaNiO3 alloying between the exsoluted Ni and Pt was observed post reaction.
|
May 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[17031]
Open Access
Abstract: In this study, we aim to contribute an understanding of the pathway of formation of Fe species during top-down synthesis of dispersed Fe on N-functionalized few layer graphene. We use X-ray absorption spectroscopy to determine the electronic structure and coordination geometry of the Fe species and in situ high angle annular dark field scanning transmission electron microscopy combined with atomic resolved electron energy loss spectroscopy to localize these, identify their chemical configuration and monitor their dynamics during thermal annealing. We show the high mobility of peripheral Fe atoms, first diffusing rapidly at the trims of the graphene layers and at temperatures as high as 573 K, diffusing from the edge planes towards in-plane locations of the graphene layers forming three-, four-coordinated metal sites and more complexes polynuclear Fe species. This process occurs via bond breaking which partially reduces the extension of the graphene domains. However, the vast majority of Fe is segregated as a metal phase. This dynamic interconversion depends on the structural details of the surrounding graphitic environment in which these are formed as well as the Fe loading. N species appear stabilizing isolated and polynuclear Fe species even at temperatures as high as 873 K. The significance of our results lies on the fact that single Fe atoms in graphene are highly mobile and therefore a structural description of the active sites as such is insufficient and more complex species might be more relevant, especially in the case of multielectron transfer reaction. Here we provide the experimental evidence on the formation of these polynuclear Fe-N sites and their structural characteristics.
|
May 2021
|
|
B18-Core EXAFS
|
Monik
Panchal
,
June
Callison
,
Vainius
Skukauskas
,
Diego
Gianolio
,
Giannantonio
Cibin
,
Andrew P. E.
York
,
Manfred Erwin
Schuster
,
Timothy I.
Hyde
,
Paul
Collier
,
C. Richard A.
Catlow
,
Emma K.
Gibson
Diamond Proposal Number(s):
[24156]
Open Access
Abstract: Platinum group metals (PGM) such as palladium and rhodium based catalysts are currently being implemented in Gasoline Particulate Filter (GPF) autoexhaust aftertreatment systems. However, little is known about how the trapped particulate matter, such as the incombustible ash, interacts with the catalyst and so may affect its performance. This operando study follows the evolution of the Pd found in two different model GPF systems: one containing ash components extracted from a GPF and another from a catalyst washcoat prior to adhesion onto the GPF. We show that the catalytic activity of the two systems vary when compared with a 0 g ash containing GPF. Compared to the 0 g ash sample the 20 g ash containing sample had a higher CO light off temperature, in addition, an oscillation profile for CO, CO2 and O2 was observed, which is speculated to be a combination of CO oxidation, C deposition via a Boudouard Reaction and further partial oxidation of the deposited species to CO. During the ageing procedure the washcoat sample reduces NO at a lower temperature than the 0 g ash sample. However, post ageing the 0 g ash sample recovers and both samples reduce NO at 310 circleC. In comparison, the 20 g ash GPF sample maintains a higher NO reduction temperature of 410 circleC post ageing, implying that the combination of high temperature ageing and presence of ash has an irreversible negative effect on catalyst performance.
|
May 2021
|
|