I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Abstract: Phytopathogens deliver effector proteins inside host plant cells to promote infection. These proteins can also be sensed by the plant immune system, leading to restriction of pathogen growth. Effector genes can display signatures of positive selection and rapid evolution, presumably a consequence of their co-evolutionary arms race with plants. The molecular mechanisms underlying how effectors evolve to gain new virulence functions and/or evade the plant immune system are poorly understood. Here, we report the crystal structures of the effector domains from two oomycete RXLR proteins, Phytophthora capsici AVR3a11 and Phytophthora infestans PexRD2. Despite sharing < 20% sequence identity in their effector domains they display a conserved core α-helical fold. Bioinformatic analyses suggest the core fold occurs in ~44% of annotated Phytophthora RXLR effectors, both as a single domain and in tandem repeats of up to 11 units. Functionally important and polymorphic residues map to the surface of the structures and PexRD2, but not AVR3a11, oligomerizes in planta. We conclude that the core α-helical fold enables functional adaptation of these fast-evolving effectors through (i) insertion/deletions in loop regions between α-helices, (ii) extensions to the N- and C-termini, (iii) amino acid replacements in surface residues, (iv) tandem domain duplications and (v) oligomerization. We hypothesize that the molecular stability provided by this core fold, combined with considerable potential for plasticity, underlies the evolution of effectors that maintain their virulence activities while evading recognition by the plant immune system.
|
Aug 2011
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Abstract: 328366 Apart from its role in insulin receptor (IR) activation, the C-terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerisation of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25 or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerisation capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25 or B26 amides resulted in reduced dimerisation abilities compared to native insulin (Kdiss = 8.8 μM). Interestingly, while the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in Kd values of 142 and 587 μM, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intra-molecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond-lock may result in its higher mobility, thereby shifting solution equilibrium towards the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallised only in the most stable R6-form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R6-specific intra/inter-molecular interactions for hexamer stability.
|
Sep 2011
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[1219]
Abstract: GlgE is a recently identified (1→4)-α-D-glucan:phosphate α-D-maltosyltransferase involved in α-glucan biosynthesis in bacteria and is a genetically validated anti-tuberculosis drug target. It is a member of the GH13_3 CAZy sub-family for which no structures were previously known. We have solved the structure of GlgE isoform I from Streptomyces coelicolor and shown that this enzyme has the same catalytic and very similar kinetic properties to GlgE from Mycobacterium tuberculosis. The S. coelicolor enzyme forms a homodimer with each subunit comprising five domains including a core catalytic α-amylase-type domain A with a (β/α)8 fold. This domain is elaborated with domain B and two inserts that are specifically configured to define a well conserved donor pocket capable of binding maltose. Domain A, together with domain N from the neighbouring subunit, forms a hydrophobic patch that is close to the maltose binding site and capable of binding cyclodextrins. Cyclodextrins competitively inhibit the binding of maltooligosaccharides to the S. coelicolor enzyme, showing that the hydrophobic patch overlaps with the acceptor binding site. This patch is incompletely conserved in the M. tuberculosis enzyme such that cyclodextrins do not inhibit this enzyme, despite acceptor length specificity being conserved. The crystal structure reveals two further domains, C and S, the latter being a helix bundle not previously reported in GH13 members. The structure provides a framework for understanding how GlgE functions and will help guide the development of inhibitors with therapeutic potential.
|
Sep 2011
|
|
I04-Macromolecular Crystallography
|
Antonio
Ariza
,
Jens M.
Eklof
,
Oliver
Spadiut
,
Wendy A.
Offen
,
Shirley M.
Roberts
,
Werner
Besenmatter
,
Esben P.
Friis
,
Michael
Skjot
,
Keith S.
Wilson
,
Harry
Brumer
,
Gideon
Davies
Diamond Proposal Number(s):
[1221]
Open Access
Abstract: The enzymatic degradation of plant polysaccharides is emerging as one of the key environmental goals of the early 21st century, impacting on many processes in the textile and detergent industries as well as biomass conversion to biofuels. One of the well known problems with the use of nonstarch (nonfood)-based substrates such as the plant cell wall is that the cellulose fibers are embedded in a network of diverse polysaccharides, including xyloglucan, that renders access difficult. There is therefore increasing interest in the “accessory enzymes,” including xyloglucanases, that may aid biomass degradation through removal of “hemicellulose” polysaccharides. Here, we report the biochemical characterization of the endo-?-1,4-(xylo)glucan hydrolase from Paenibacillus polymyxa with polymeric, oligomeric, and defined chromogenic aryl-oligosaccharide substrates. The enzyme displays an unusual specificity on defined xyloglucan oligosaccharides, cleaving the XXXG-XXXG repeat into XXX and GXXXG. Kinetic analysis on defined oligosaccharides and on aryl-glycosides suggests that both the ?4 and +1 subsites show discrimination against xylose-appended glucosides. The three-dimensional structures of PpXG44 have been solved both in apo-form and as a series of ligand complexes that map the ?3 to ?1 and +1 to +5 subsites of the extended ligand binding cleft. Complex structures are consistent with partial intolerance of xylosides in the ?4? subsites. The atypical specificity of PpXG44 may thus find use in industrial processes involving xyloglucan degradation, such as biomass conversion, or in the emerging exciting applications of defined xyloglucans in food, pharmaceuticals, and cellulose fiber modification.
|
Sep 2011
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[6385]
Abstract: The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand cross-links. At the heart of this pathway is the monoubiquitination of the FANCI-FANCD2 (ID) complex by the multiprotein “core complex” containing the E3 ubiquitin ligase FANCL. Vertebrate organisms have the eight-protein core complex, whereas invertebrates apparently do not. We report here the structure of the central domain of human FANCL in comparison with the recently solved Drosophila melanogaster FANCL. Our data represent the first structural detail into the catalytic core of the human system and reveal that the central fold of FANCL is conserved between species. However, there are macromolecular differences between the FANCL proteins that may account for the apparent distinctions in core complex requirements between the vertebrate and invertebrate FA pathways. In addition, we characterize the binding of human FANCL with its partners, Ube2t, FANCD2, and FANCI. Mutational analysis reveals which residues are required for substrate binding, and we also show the domain required for E2 binding.
|
Sep 2011
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[6853]
Open Access
Abstract: Peroxiredoxin IV (PrxIV) is an endoplasmic reticulum-localized enzyme that metabolizes the hydrogen peroxide produced by endoplasmic reticulum oxidase 1 (Ero1). It has been shown to play a role in de novo disulfide formation, oxidizing members of the protein disulfide isomerase family of enzymes, and is a member of the typical 2-Cys peroxiredoxin family. We have determined the crystal structure of both reduced and disulfide-bonded, as well as a resolving cysteine mutant of human PrxIV. We show that PrxIV has a similar structure to other typical 2-Cys peroxiredoxins and undergoes a conformational change from a fully folded to a locally unfolded form following the formation of a disulfide between the peroxidatic and resolving cysteine residues. Unlike other mammalian typical 2-Cys peroxiredoxins, we show that human PrxIV forms a stable decameric structure even in its disulfide-bonded state. In addition, the structure of a resolving cysteine mutant reveals an intermediate in the reaction cycle that adopts the locally unfolded conformation. Interestingly the peroxidatic cysteine in the crystal structure is sulfenylated rather than sulfinylated or sulfonylated. In addition, the peroxidatic cysteine in the resolving cysteine mutant is resistant to hyper-oxidation following incubation with high concentrations of hydrogen peroxide. These results highlight some unique properties of PrxIV and suggest that the equilibrium between the fully folded and locally unfolded forms favors the locally unfolded conformation upon sulfenylation of the peroxidatic cysteine residue.
|
Oct 2011
|
|
I04-Macromolecular Crystallography
|
Abstract: Colonization of Helicobacter pylori in the acidic environment of the human stomach depends on the neutralizing activity of urease. Activation of apo-urease involves carboxylation of lysine 219 and insertion of two nickel ions. In H. pylori, this maturation process involves four urease accessory proteins as follows: UreE, UreF, UreG, and UreH. It is postulated that the apo-urease interacts with UreF, UreG, and UreH to form a pre-activation complex that undergoes GTP-dependent activation of urease. The crystal structure of the UreF-UreH complex reveals conformational changes in two distinct regions of UreF upon complex formation. First, the flexible C-terminal residues of UreF become ordered, forming an extra helix ?10 and a loop structure stabilized by hydrogen bonds involving Arg-250. Second, the first turn of helix ?2 uncoils to expose a conserved residue, Tyr-48. Substitution of R250A or Y48A in UreF abolishes the formation of the heterotrimeric complex of UreG-UreF-UreH and abolishes urease maturation. Our results suggest that the C-terminal residues and helix ?2 of UreF are essential for the recruitment of UreG for the formation of the pre-activation complex. The molecular mass of the UreF-UreH complex determined by static light scattering was 116 ± 2.3 kDa, which is consistent with the quaternary structure of a dimer of heterodimers observed in the crystal structure. Taking advantage of the unique 2-fold symmetry observed in both the crystal structures of H. pylori urease and the UreF-UreH complex, we proposed a topology model of the pre-activation complex for urease maturation.
|
Oct 2011
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[6419]
Abstract: Matrix metalloproteinase-1 (MMP-1) is an instigator of collagenolysis, the catabolism of triple helical collagen. Previous studies have implicated its hemopexin (HPX) domain in binding and possibly destabilizing the collagen substrate in preparation for hydrolysis of the polypeptide backbone by the catalytic (CAT) domain. Here, we use biophysical methods to study the complex formed between the MMP-1 HPX domain and a synthetic triple helical peptide (THP) that encompasses the MMP-1 cleavage site of the collagen ?1(I) chain. The two components interact with 1:1 stoichiometry and micromolar affinity via a binding site within blades 1 and 2 of the four-bladed HPX domain propeller. Subsequent site-directed mutagenesis and assay implicates blade 1 residues Phe301, Val319, and Asp338 in collagen binding. Intriguingly, Phe301 is partially masked by the CAT domain in the crystal structure of full-length MMP-1 implying that transient separation of the domains is important in collagen recognition. However, mutation of this residue in the intact enzyme disrupts the CAT-HPX interface resulting in a drastic decrease in binding activity. Thus, a balanced equilibrium between these compact and dislocated states may be an essential feature of MMP-1 collagenase activity.
|
Nov 2011
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[442]
Open Access
Abstract: Nϵ-Methylations of histone lysine residues play critical roles in cell biology by “marking” chromatin for transcriptional activation or repression. Lysine demethylases reverse Nϵ-methylation in a sequence- and methylation-selective manner. The determinants of sequence selectivity for histone demethylases have been unclear. The human JMJD2 (KDM4) H3K9 and H3K36 demethylases can be divided into members that act on both H3K9 and H3K36 and H3K9 alone. Kinetic, crystallographic, and mutagenetic studies in vitro and in cells on KDM4A–E reveal that selectivity is determined by multiple interactions within the catalytic domain but outside the active site. Structurally informed phylogenetic analyses reveal that KDM4A–C orthologues exist in all genome-sequenced vertebrates with earlier animals containing only a single KDM4 enzyme. KDM4D orthologues only exist in eutherians (placental mammals) where they are conserved, including proposed substrate sequence-determining residues. The results will be useful for the identification of inhibitors for specific histone demethylases.
|
Nov 2011
|
|
I04-Macromolecular Crystallography
|
Open Access
Abstract: Ribonuclease H2 (RNase H2) is the major nuclear enzyme involved in the degradation of RNA/DNA hybrids and removal of ribonucleotides misincorporated in genomic DNA. Mutations in each of the three RNase H2 subunits have been implicated in a human auto-inflammatory disorder, Aicardi-Goutières Syndrome (AGS). To understand how mutations impact on RNase H2 function we determined the crystal structure of the human heterotrimer. In doing so, we correct several key regions of the previously reported murine RNase H2 atomic model and provide biochemical validation for our structural model. Our results provide new insights into how the subunits are arranged to form an enzymatically active complex. In particular, we establish that the RNASEH2A C terminus is a eukaryotic adaptation for binding the two accessory subunits, with residues within it required for enzymatic activity. This C-terminal extension interacts with the RNASEH2C C terminus and both are necessary to form a stable, enzymatically active heterotrimer. Disease mutations cluster at this interface between all three subunits, destabilizing the complex and/or impairing enzyme activity. Altogether, we locate 25 out of 29 residues mutated in AGS patients, establishing a firm basis for future investigations into disease pathogenesis and function of the RNase H2 enzyme.
|
Dec 2011
|
|