I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8922]
Open Access
Abstract: Several soil-derived Actinobacteria produce secondary metabolites that are proven specific and potent inhibitors of the human angiotensin-I-converting enzyme (ACE), a key target for the modulation of hypertension through its role in the renin–angiotensin–aldosterone system. K-26-DCP is a zinc dipeptidyl carboxypeptidase (DCP) produced by Astrosporangium hypotensionis, and an ancestral homologue of ACE. Here we report the high-resolution crystal structures of K-26-DCP and of its complex with the natural microbial tripeptide product K-26. The experimental results provide the structural basis for better understanding the specificity of K-26 for human ACE over bacterial DCPs.
|
Nov 2016
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8922]
Abstract: Colonisation of the gut by Clostridium difficile requires the adhesion of the bacterium to host cells. A range of cell surface located factors have been linked to adhesion including the S-layer protein LMW SLP and the related protein Cwp66. As well as these proteins, the S-layer of C. difficile may contain around thirty others. One such protein is Cwp2. Here, we demonstrate the production of a C. difficile strain 630 cwp2 knockout mutant and assess the effect on the bacterium. The mutant results in increased TcdA (toxin A) release and impaired cellular adherence in vitro. We also present the extended three domain structure of the “functional” region of Cwp2, consisting of residues 29-318 at 1.9 Å, which is compared to that of LMW SLP and Cwp8. The adhesive properties of Cwp2 and LMW SLP, which are likely to be shared by Cwp8, are predicted to be mediated by the variable loop regions in domain 2.
|
Jul 2017
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[11171]
Abstract: Alcohol dehydrogenase A (ADH-A) from Rhodococcus ruber DSM 44541 is a promising biocatalyst for redox transformations of arylsubstituted sec-alcohols and ketones. The enzyme is stereoselective in the oxidation of 1-phenylethanol with a 300-fold preference for the (S)-enantiomer. The low catalytic efficiency with (R)-1-phenylethanol has been attributed to nonproductive binding of this substrate at the active site. Aiming to modify the enantioselectivity, to rather favor the (R)-alcohol, and also test the possible involvement of nonproductive substrate binding as a mechanism in substrate discrimination, we performed directed laboratory evolution of ADH-A. Three targeted sites that contribute to the active-site cavity were exposed to saturation mutagenesis in a stepwise manner and the generated variants were selected for improved catalytic activity with (R)-1-phenylethanol. After three subsequent rounds of mutagenesis, selection and structure-function analysis of isolated ADH-A variants, we conclude: (1) W295 has a key role as a structural determinant in the discrimination between (R)- and (S)-1-phenylethanol and a W295A substitution fundamentally changes the stereoselectivity of the protein. One observable effect is a faster rate of NADH release, which changes the rate-limiting step of the catalytic cycle from coenzyme release to hydride transfer. (2) The obtained change in enantiopreference, from the (S)- to the (R)-alcohol, can be partly explained by a shift in the nonproductive substrate binding modes.
|
Sep 2017
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[12788]
Abstract: The Tripartite Tricarboxylate Transporter (TTT) family is a poorly characterised group of prokaryotic secondary solute transport systems, which employ a periplasmic substrate binding-protein (SBP) for initial ligand recognition. The substrates of only a small number of TTT systems are known and very few SBP structures have been solved, so the mechanisms of SBP-ligand interactions in this family are not well understood. The SBP RPA4515 (AdpC) from Rhodopseudomonas palustris was found by differential scanning fluorescence and isothermal titration calorimetry to bind aliphatic dicarboxylates of a chain length of six to nine carbons, with KD values in the μM range. The highest affinity was found for the C6-dicarboxylate adipate (1,6-hexanedioate). Crystal structures of AdpC with either adipate or 2-oxoadipate bound revealed a lack of positively charged amino-acids in the binding pocket and showed that water molecules are involved in bridging hydrogen bonds to the substrate, a conserved feature in the TTT SBP family that is distinct from other types of SBP. In AdpC, both of the ligand carboxylate groups and a linear chain conformation are needed for coordination in the binding pocket. RT-PCR showed that adpC expression is upregulated by low environmental adipate concentrations, suggesting adipate is a physiologically relevant substrate but as adpC is not genetically linked to any TTT membrane transport genes, the role of AdpC may be in signalling rather than transport. Our data expands the known ligands for TTT systems and identifies a novel high-affinity binding-protein for adipate, an important industrial chemical intermediate and food additive.
|
Oct 2017
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[7131, 8922]
Open Access
Abstract: Clostridium difficile is a burden to healthcare systems around the world, causing tens of thousands of deaths annually. The S-layer of the bacterium, a layer of protein found of the surface of cells, has received a significant amount of attention over the past two decades as a potential target to combat the growing threat presented by C. difficile infections. The S-layer contains a wide range of proteins, each of which possesses three cell wall-binding domains, while many also possess a “functional” region. Here, we present the high resolution structure of the functional region of one such protein, Cwp19 along with preliminary functional characterisation of the predicted glycoside hydrolase. Cwp19 has a TIM barrel fold and appears to possess a high degree of substrate selectivity. The protein also exhibits peptidoglycan hydrolase activity, an order of magnitude slower than that of lysozyme and is the first member of glycoside hydrolase-like family 10 to be characterised. This research goes some way to understanding the role of Cwp19 in the S-layer of C. difficile.
|
Nov 2017
|
|
I04-Macromolecular Crystallography
|
Filipa
Mota
,
Constantina
Fotinou
,
Rohini
Rhana
,
A. W.
Edith Chan
,
Tamas
Yelland
,
Mohamed T.
Arooz
,
Andrew P.
O'leary
,
Jennie
Hutton
,
Paul
Frankel
,
Ian
Zachary
,
David
Selwood
,
Snezana
Djordjevic
Diamond Proposal Number(s):
[12305]
Open Access
Abstract: Neuropilin-1 (NRP1) is a transmembrane co-receptor involved in binding interactions with variety of ligands and receptors, including receptor tyrosine kinases. Expression of NRP1 in several cancers correlates with cancer stages and poor prognosis. Thus, NRP1 has been considered a therapeutic target and is the focus of multiple drug discovery initiatives. Vascular endothelial growth factor (VEGF) binds to the b1 domain of NRP1 through interactions between the C-terminal arginine of VEGF and residues in the NRP1 binding site including Tyr297, Tyr353, Asp320, Ser346, and Thr349. We obtained several complexes of the synthetic ligands and the NRP1-b1 domain and used X-ray crystallography and computational methods to analyze atomic details and hydration profile of this binding site. We observed side chain flexibility for Tyr297 and Asp320 in the 6 new high resolution crystal structures of arginine analogues bound to NRP1. In addition, we identified conserved water molecules in binding site regions which can be targeted for drug design. The computational prediction of the VEGF ligand-binding site hydration map of NRP1 was in agreement with the experimentally-derived, conserved hydration structure. Displacement of certain conserved water molecules by a ligand's functional groups may contribute to binding affinity, whilst other water molecules perform as protein - ligand bridges. Our report provides a comprehensive description of the binding site for the peptidic ligands’ C-terminal arginines in the b1 domain of NRP1, highlights the importance of conserved structural waters in drug design, and validates the utility of the computational hydration map prediction method in the context of neuropilin.
|
Feb 2018
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[12342]
Abstract: Angiotensin-1 converting enzyme (ACE) is a zinc metallopeptidase that consists of two homologous catalytic domains (known as nACE and cACE) with different substrate specificities. Based on kinetic studies it was previously reported that sampatrilat, a tight-binding inhibitor of ACE, Ki =13.8 nM and 171.9 nM for cACE and nACE respectively [Sharma et al., Journal of Chemical Information and Modeling (2016), 56, 2486-2494] was 12.4-fold more selective for cACE. In addition, samAsp, in which an aspartate group replaces the sampatrilat lysine, was found to be a non-specific and lower micromolar affinity inhibitor. Here we report a detailed three-dimensional structural analysis of sampatrilat and samAsp binding to ACE using high resolution crystal structures elucidated by X-ray crystallography, which provides a molecular basis for differences in inhibitor affinity and selectivity for nACE and cACE. The structures show that the specificity of sampatrilat can be explained by increased hydrophobic interactions and a H-bond from Glu403 of cACE with the lysine side chain of sampatrilat that are not observed in nACE. In addition, the structures clearly show a significantly greater number of hydrophilic and hydrophobic interactions with sampatrilat compared to samAsp in both cACE and nACE consistent with the difference in affinities. Our findings provide new experimental insights into ligand binding at the active site pockets that are important for the design of highly specific domain selective inhibitors of ACE.
|
Feb 2018
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14692]
Abstract: The identification of enzymes responsible for oxidation of lignin in lignin‐degrading bacteria is of interest for biotechnological valorization of lignin to renewable chemical products. The genome sequences of two lignin‐degrading bacteria, Ochrobactrum sp., and Paenibacillus sp., contain no B‐type DyP peroxidases implicated in lignin degradation in other bacteria, but contain putative multicopper oxidase genes. Multi‐copper oxidase CueO from Ochrobactrum sp. was expressed and reconstituted as a recombinant laccase‐like enzyme, and kinetically characterized. Ochrobactrum CueO shows activity for oxidation of β‐aryl ether and biphenyl lignin dimer model compounds, generating oxidized dimeric products, and shows activity for oxidation of Ca‐lignosulfonate, generating vanillic acid as a low molecular weight product. The crystal structure of Ochrobactrum CueO (OcCueO) has been determined at 1.1 Å resolution (PDB: 6EVG), showing a four‐coordinate mononuclear type I copper center with ligands His495, His434 and Cys490 with Met500 as an axial ligand, similar to that of Escherichia coli CueO and bacterial azurin proteins, whereas fungal laccase enzymes contain a three‐coordinate type I copper metal center. A trinuclear type 2/3 copper cluster was modeled into the active site, showing similar structure to E. coli CueO and fungal laccases, and three solvent channels leading to the active site. Site‐directed mutagenesis was carried out on amino acid residues found in the solvent channels, indicating the importance for residues Asp102, Gly103, Arg221, Arg223, and Asp462 for catalytic activity. The work identifies a new bacterial multicopper enzyme with activity for lignin oxidation, and implicates a role for bacterial laccase‐like multicopper oxidases in some lignin‐degrading bacteria.
|
Mar 2018
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9495]
Abstract: The identification of new strategies to fight bacterial infections in view of the spread of multiple resistance to antibiotics has become mandatory. It has been demonstrated that several bacteria develop poly‐γ‐glutamic acid (γ‐PGA) capsules as a protection from external insults and/or host defence systems. Among the pathogens that shield themselves in these capsules are B. anthracis, F. tularensis and several Staphylococcus strains. These are important pathogens with a profound influence on human health. The recently characterised γ‐PGA hydrolases, which can dismantle the γ‐PGA‐capsules, are an attractive new direction that can offer real hope for the development of alternatives to antibiotics, particularly in cases of multidrug resistant bacteria. We have characterised in detail the cleaving mechanism and stereospecificity of the enzyme PghL (previously named YndL) from B. subtilis encoded by a gene of phagic origin and dramatically efficient in degrading the long polymeric chains of γ‐PGA. We used X‐ray crystallography to solve the three‐dimensional structures of the enzyme in its zinc‐free, zinc‐bound and complexed forms. The protein crystallised with a γ‐PGA hexapeptide substrate and thus reveals details of the interaction which could explain the stereospecificity observed and give hints on the catalytic mechanism of this class of hydrolytic enzymes.
|
Nov 2018
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Ramya
Salimraj
,
Philip
Hinchliffe
,
Magda
Kosmopoulou
,
Jonathan M.
Tyrrell
,
Jurgen
Brem
,
Sander S.
Van Berkel
,
Anil
Verma
,
Raymond J.
Owens
,
Michael A.
Mcdonough
,
Timothy R.
Walsh
,
Christopher J.
Schofield
,
James
Spencer
Diamond Proposal Number(s):
[313]
Abstract: Metallo‐β‐Lactamases (MBLs) protect bacteria from almost all β‐lactam antibiotics. VIM enzymes are among the most clinically important MBLs, with VIM‐1 increasing in carbapenem‐resistant Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae) that are amongst the hardest bacterial pathogens to treat. VIM enzymes display sequence variation at residues (224 and 228) that in related MBLs are conserved and participate in substrate binding. How they accommodate this variability, while retaining catalytic efficiency against a broad substrate range, has remained unclear. Here we present crystal structures of VIM‐1 and its complexes with a substrate‐mimicking thioenolate inhibitor, ML302F, that restores meropenem activity against a range of VIM‐1 producing clinical strains, and the hydrolysed product of the carbapenem meropenem. Comparison of these two structures identifies a water‐mediated hydrogen bond, between the carboxylate group of substrate/inhibitor and the backbone carbonyl of the active site zinc ligand Cys221, that is common to both complexes. Structural comparisons show that the responsible Cys221‐bound water is observed in all known VIM structures, participates in carboxylate binding with other inhibitor classes, and thus effectively replicates the role of the conserved Lys224 in analogous complexes with other MBLs. These results provide a mechanism for substrate binding that permits the variation at positions 224 and 228 that is a hallmark of VIM MBLs.
|
Nov 2018
|
|