|
Luiz Carlos
Saramago
,
Marcos V.
Santana
,
Bárbara Figueira
Gomes
,
Rafael Ferreira
Dantas
,
Mario R.
Senger
,
Pedro Henrique
Oliveira Borges
,
Vivian Neuza
Dos Santos Ferreira
,
Alice
Dos Santos Rosa
,
Amanda Resende
Tucci
,
Milene
Dias Miranda
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
C. David
Owen
,
Martin A.
Walsh
,
Sabrina
Baptista Ferreira
,
Floriano Paes
Silva-Junior
Abstract: SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp’s, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC50 values ranging from 1.5 to 241 μM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC50 value comparable to its measured IC50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N-pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.
|
Apr 2023
|
|
VMXm-Versatile Macromolecular Crystallography microfocus
|
Lennart
Brewitz
,
Leo
Dumjahn
,
Yilin
Zhao
,
C. David
Owen
,
Stephen M.
Laidlaw
,
Tika R.
Malla
,
Dung
Nguyen
,
Petra
Lukacik
,
Eidarus
Salah
,
Adam D.
Crawshaw
,
Anna J.
Warren
,
Jose
Trincao
,
Claire
Strain-Damerell
,
Miles W.
Carroll
,
Martin A.
Walsh
,
Christopher J.
Schofield
Diamond Proposal Number(s):
[27088]
Open Access
Abstract: Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.
|
Feb 2023
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Daniel
Zaidman
,
Paul
Gehrtz
,
Mihajlo
Filep
,
Daren
Fearon
,
Ronen
Gabizon
,
Alice
Douangamath
,
Jaime
Prilusky
,
Shirly
Duberstein
,
Galit
Cohen
,
C. David
Owen
,
Efrat
Resnick
,
Claire
Strain-Damerell
,
Petra
Lukacik
,
Haim
Barr
,
Martin A.
Walsh
,
Frank
Von Delft
,
Nir
London
Diamond Proposal Number(s):
[18145, 27963]
Abstract: Designing covalent inhibitors is increasingly important, although it remains challenging. Here, we present covalentizer, a computational pipeline for identifying irreversible inhibitors based on structures of targets with non-covalent binders. Through covalent docking of tailored focused libraries, we identify candidates that can bind covalently to a nearby cysteine while preserving the interactions of the original molecule. We found ∼11,000 cysteines proximal to a ligand across 8,386 complexes in the PDB. Of these, the protocol identified 1,553 structures with covalent predictions. In a prospective evaluation, five out of nine predicted covalent kinase inhibitors showed half-maximal inhibitory concentration (IC50) values between 155 nM and 4.5 μM. Application against an existing SARS-CoV Mpro reversible inhibitor led to an acrylamide inhibitor series with low micromolar IC50 values against SARS-CoV-2 Mpro. The docking was validated by 12 co-crystal structures. Together these examples hint at the vast number of covalent inhibitors accessible through our protocol.
|
Jun 2021
|
|
Krios II-Titan Krios II at Diamond
Krios IV-Titan Krios IV at Diamond
|
Diamond Proposal Number(s):
[26464, 28151]
Open Access
Abstract: Developments in cryo-EM have allowed atomic or near-atomic resolution structure determination to become routine in single particle analysis (SPA). However, near-atomic resolution structures determined using cryo-electron tomography and sub-tomogram averaging (cryo-ET STA) are much less routine. In this paper, we show that by collecting cryo-ET STA data using the same conditions as SPA, with both Correlated Double Sampling (CDS) and super-resolution mode, allowed apoferritin to be reconstructed out to the physical Nyquist frequency of the images. Even with just two tilt series, STA yields an apoferritin map at 2.9 Å resolution. These results highlight the exciting potential of cryo-ET STA in the future of protein structure determination. While processing SPA data recorded in super-resolution mode may yield structures surpassing the physical Nyquist limit, processing cryo-ET STA data in super-resolution mode gave no additional resolution benefit. We further show that collecting SPA data in super-resolution mode, with CDS activated, reduces the estimated B-factor, leading to a reduction in the number of particles required to reach a target resolution without compromising data size on disk and area imaged in SerialEM. However, collecting SPA data in CDS does reduce throughput, given that a similar resolution structure, with a slightly larger B-factor, is achievable with optimised parameters for speed in EPU (without CDS).
|
Apr 2022
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I24-Microfocus Macromolecular Crystallography
|
Martin A.
Redhead
,
C. David
Owen
,
Lennart
Brewitz
,
Amelia H.
Collette
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Sean W.
Robinson
,
Patrick M.
Collins
,
Philipp
Schäfer
,
Mark
Swindells
,
Chris J.
Radoux
,
Iva Navratilova
Hopkins
,
Daren
Fearon
,
Alice
Douangamath
,
Frank
Von Delft
,
Tika R.
Malla
,
Laura
Vangeel
,
Thomas
Vercruysse
,
Jan
Thibaut
,
Pieter
Leyssen
,
Tu-Trinh
Nguyen
,
Mitchell
Hull
,
Anthony
Tumber
,
David J.
Hallett
,
Christopher J.
Schofield
,
David I.
Stuart
,
Andrew L.
Hopkins
,
Martin A.
Walsh
Open Access
Abstract: Effective agents to treat coronavirus infection are urgently required, not only to treat COVID-19, but to prepare for future outbreaks. Repurposed anti-virals such as remdesivir and human anti-inflammatories such as barcitinib have received emergency approval but their overall benefits remain unclear. Vaccines are the most promising prospect for COVID-19, but will need to be redeveloped for any future coronavirus outbreak. Protecting against future outbreaks requires the identification of targets that are conserved between coronavirus strains and amenable to drug discovery. Two such targets are the main protease (Mpro) and the papain-like protease (PLpro) which are essential for the coronavirus replication cycle. We describe the discovery of two non-antiviral therapeutic agents, the caspase-1 inhibitor SDZ 224015 and Tarloxotinib that target Mpro and PLpro, respectively. These were identified through extensive experimental screens of the drug repurposing ReFRAME library of 12,000 therapeutic agents. The caspase-1 inhibitor SDZ 224015, was found to be a potent irreversible inhibitor of Mpro (IC50 30 nM) while Tarloxotinib, a clinical stage epidermal growth factor receptor inhibitor, is a sub micromolar inhibitor of PLpro (IC50 300 nM, Ki 200 nM) and is the first reported PLpro inhibitor with drug-like properties. SDZ 224015 and Tarloxotinib have both undergone safety evaluation in humans and hence are candidates for COVID-19 clinical evaluation.
|
Jun 2021
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
|
Alice
Douangamath
,
Daren
Fearon
,
Paul
Gehrtz
,
Tobias
Krojer
,
Petra
Lukacik
,
C. David
Owen
,
Efrat
Resnick
,
Claire
Strain-Damerell
,
Anthony
Aimon
,
Péter
Ábrányi-Balogh
,
Jose
Brandao-Neto
,
Anna
Carbery
,
Gemma
Davison
,
Alexandre
Dias
,
Thomas D.
Downes
,
Louise
Dunnett
,
Michael
Fairhead
,
James D.
Firth
,
S. Paul
Jones
,
Aaron
Keeley
,
György M.
Keserü
,
Hanna F.
Klein
,
Mathew P.
Martin
,
Martin M.
Noble
,
Peter
O’brien
,
Ailsa
Powell
,
Rambabu N.
Reddi
,
Rachael
Skyner
,
Matthew
Snee
,
Michael J.
Waring
,
Conor
Wild
,
Nir
London
,
Frank
Von Delft
,
Martin A.
Walsh
Open Access
Abstract: COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.
|
Oct 2020
|
|
NONE-No attached Diamond beamline
|
H. T. Henry
Chan
,
Marc A.
Moesser
,
Rebecca K.
Walters
,
Tika R.
Malla
,
Rebecca M.
Twidale
,
Tobias
John
,
Helen M.
Deeks
,
Tristan
Johnston-Wood
,
Victor
Mikhailov
,
Richard B.
Sessions
,
William
Dawson
,
Eidarus
Salah
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
C. David
Owen
,
Takahito
Nakajima
,
Katarzyna
Świderek
,
Alessio
Lodola
,
Vicent
Moliner
,
David R.
Glowacki
,
James
Spencer
,
Martin A.
Walsh
,
Christopher J.
Schofield
,
Luigi
Genovese
,
Deborah K.
Shoemark
,
Adrian J.
Mulholland
,
Fernanda
Duarte
,
Garrett M.
Morris
Open Access
Abstract: The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective ‘peptibitors’ inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.
|
Oct 2021
|
|
I03-Macromolecular Crystallography
|
Takashi
Miura
,
Tika R.
Malla
,
C. David
Owen
,
Anthony
Tumber
,
Lennart
Brewitz
,
Michael A.
Mcdonough
,
Eidarus
Salah
,
Naohiro
Terasaka
,
Takayuki
Katoh
,
Petra
Lukacik
,
Claire
Strain-Damerell
,
Halina
Mikolajek
,
Martin A.
Walsh
,
Akane
Kawamura
,
Christopher J.
Schofield
,
Hiroaki
Suga
Diamond Proposal Number(s):
[27088]
Open Access
Abstract: γ-Amino acids can play important roles in the biological activities of natural products; however, the ribosomal incorporation of γ-amino acids into peptides is challenging. Here we report how a selection campaign employing a non-canonical peptide library containing cyclic γ2,4-amino acids resulted in the discovery of very potent inhibitors of the SARS-CoV-2 main protease (Mpro). Two kinds of cyclic γ2,4-amino acids, cis-3-aminocyclobutane carboxylic acid (γ1) and (1R,3S)-3-aminocyclopentane carboxylic acid (γ2), were ribosomally introduced into a library of thioether-macrocyclic peptides. One resultant potent Mpro inhibitor (half-maximal inhibitory concentration = 50 nM), GM4, comprising 13 residues with γ1 at the fourth position, manifests a 5.2 nM dissociation constant. An Mpro:GM4 complex crystal structure reveals the intact inhibitor spans the substrate binding cleft. The γ1 interacts with the S1′ catalytic subsite and contributes to a 12-fold increase in proteolytic stability compared to its alanine-substituted variant. Knowledge of interactions between GM4 and Mpro enabled production of a variant with a 5-fold increase in potency.
|
May 2023
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Thomas
Mccorvie
,
Jolanta
Kopec
,
S J
Hyung
,
Fiona
Fitzpatrick
,
X
Feng
,
D.
Termine
,
C.
Strain-Damerell
,
Melanie
Vollmar
,
J.
Fleming
,
J. M.
Janz
,
C.
Bulawa
,
Wyatt
Yue
Diamond Proposal Number(s):
[8421, 10619]
Open Access
Abstract: Cystathionine β-synthase (CBS) is a key enzyme in sulfur metabolism, and its inherited deficiency causes homocystinuria. Mammalian CBS is modulated by the binding of S-adenosyl-l-methionine (AdoMet) to its regulatory domain, which activates its catalytic domain. To investigate the underlying mechanism, we performed x-ray crystallography, mutagenesis, and mass spectrometry (MS) on human CBS. The 1.7 Å structure of a AdoMet-bound CBS regulatory domain shows one AdoMet molecule per monomer, at the interface between two constituent modules (CBS-1, CBS-2). AdoMet binding is accompanied by a reorientation between the two modules, relative to the AdoMet-free basal state, to form interactions with AdoMet via residues verified by mutagenesis to be important for AdoMet binding (Phe443, Asp444, Gln445, and Asp538) and for AdoMet-driven inter-domain communication (Phe443, Asp538). The observed structural change is further supported by ion mobility MS, showing that as-purified CBS exists in two conformational populations, which converged to one in the presence of AdoMet. We therefore propose that AdoMet-induced conformational change alters the interface and arrangement between the catalytic and regulatory domains within the CBS oligomer, thereby increasing the accessibility of the enzyme active site for catalysis.
|
Dec 2014
|
|
|
Abstract: The two SARS-CoV-2 proteases, i.e. the main protease (M pro ) and the papain-like protease (PL pro ), which hydrolyze the viral polypeptide chain giving functional non-structural proteins, are essential for viral replication and are medicinal chemistry targets. We report a high-throughput mass spectrometry (MS)-based assay which directly monitors PL pro catalysis in vitro . The assay was applied to investigate the effect of reported small-molecule PL pro inhibitors and selected M pro inhibitors on PL pro catalysis. The results reveal that some, but not all, PL pro inhibitor potencies differ substantially from those obtained using fluorescence-based assays. Some substrate-competing M pro inhibitors, notably PF-07321332 (nirmatrelvir) which is in clinical development, do not inhibit PL pro . Less selective M pro inhibitors, e.g. auranofin, inhibit PL pro , highlighting the potential for dual PL pro /M pro inhibition. MS-based PL pro assays, which are orthogonal to widely employed fluorescence-based assays, are of utility in validating inhibitor potencies, especially for inhibitors operating by non-covalent mechanisms.
|
Jan 2022
|
|