I24-Microfocus Macromolecular Crystallography
|
Abhay
Kotecha
,
Quan
Wang
,
Xianchi
Dong
,
Serban L.
Ilca
,
Marina
Ondiviela
,
Rao
Zihe
,
Julian
Seago
,
Bryan
Charleston
,
Elizabeth E.
Fry
,
Nicola G. A.
Abrescia
,
Timothy A.
Springer
,
Juha T.
Huiskonen
,
David I.
Stuart
Open Access
Abstract: Foot-and-mouth disease virus (FMDV) mediates cell entry by attachment to an integrin receptor, generally αvβ6, via a conserved arginine–glycine–aspartic acid (RGD) motif in the exposed, antigenic, GH loop of capsid protein VP1. Infection can also occur in tissue culture adapted virus in the absence of integrin via acquired basic mutations interacting with heparin sulphate (HS); this virus is attenuated in natural infections. HS interaction has been visualized at a conserved site in two serotypes suggesting a propensity for sulfated-sugar binding. Here we determined the interaction between αvβ6 and two tissue culture adapted FMDV strains by cryo-electron microscopy. In the preferred mode of engagement, the fully open form of the integrin, hitherto unseen at high resolution, attaches to an extended GH loop via interactions with the RGD motif plus downstream hydrophobic residues. In addition, an N-linked sugar of the integrin attaches to the previously identified HS binding site, suggesting a functional role.
|
May 2017
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[14744]
Open Access
Abstract: Entry of enveloped viruses relies on insertion of hydrophobic residues of the viral fusion protein into the host cell membrane. However, the intermediate conformations during fusion remain unknown. Here, we address the fusion mechanism of Rift Valley fever virus. We determine the crystal structure of the Gn glycoprotein and fit it with the Gc fusion protein into cryo-electron microscopy reconstructions of the virion. Our analysis reveals how the Gn shields the hydrophobic fusion loops of the Gc, preventing premature fusion. Electron cryotomography of virions interacting with membranes under acidic conditions reveals how the fusogenic Gc is activated upon removal of the Gn shield. Repositioning of the Gn allows extension of Gc and insertion of fusion loops in the outer leaflet of the target membrane. These data show early structural transitions that enveloped viruses undergo during host cell entry and indicate that analogous shielding mechanisms are utilized across diverse virus families.
|
Jan 2018
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[10627]
Open Access
Abstract: Hantaviruses are zoonotic pathogens with a near-global distribution that can cause severe hemorrhagic fever and pulmonary syndrome. The outer membrane of the hantavirus envelope displays a lattice of two glycoproteins, Gn and Gc, which orchestrate host cell recognition and entry. Here, we describe the crystal structure of the Gn glycoprotein ectodomain from the Asiatic Hantaan virus (HTNV), the most prevalent pathogenic hantavirus. Structural overlay analysis reveals that the HTNV Gn fold is highly similar to the Gn of Puumala virus (PUUV), a genetically and geographically distinct and less pathogenic hantavirus found predominantly in North-Eastern Europe, confirming that the hantaviral Gn fold is architecturally conserved across hantavirus clades. Interestingly, HTNV Gn crystallized at acidic pH, in a compact tetrameric configuration distinct from the organization at neutral pH. Analysis of the Gn, both in solution and in the context of the virion, confirms the pH-sensitive oligomeric nature of the glycoprotein, indicating that the hantaviral Gn undergoes structural transitions during host cell entry. These data allow us to present a structural model for how acidification during endocytic uptake of the virus triggers the dissociation of the metastable Gn-Gc lattice to enable insertion of the Gc-resident hydrophobic fusion loops into the host cell membrane. Together, these data reveal the dynamic plasticity of the structurally conserved hantaviral surface.
|
Aug 2017
|
|
I03-Macromolecular Crystallography
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[8423]
Open Access
Abstract: The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca2+ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca2+ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses.
|
Jan 2014
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8423]
Abstract: An emergent viral pathogen termed severe fever with thrombocytopenia syndrome virus (SFTSV) is responsible for thousands of clinical cases and associated fatalities in China, Japan, and South Korea. Akin to other phleboviruses, SFTSV relies on a viral glycoprotein, Gc, to catalyze the merger of endosomal host and viral membranes during cell entry. Here, we describe the postfusion structure of SFTSV Gc, revealing that the molecular transformations the phleboviral Gc undergoes upon host cell entry are conserved with otherwise unrelated alpha- and flaviviruses. By comparison of SFTSV Gc with that of the prefusion structure of the related Rift Valley fever virus, we show that these changes involve refolding of the protein into a trimeric state. Reverse genetics and rescue of site-directed histidine mutants enabled localization of histidines likely to be important for triggering this pH-dependent process. These data provide structural and functional evidence that the mechanism of phlebovirus–host cell fusion is conserved among genetically and patho-physiologically distinct viral pathogens.
|
Jun 2016
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Mariana
Grieben
,
Ashley C. W.
Pike
,
Chitra A.
Shintre
,
Elisa
Venturi
,
Sam
El-ajouz
,
Annamaria
Tessitore
,
Leela
Shrestha
,
Shubhashish
Mukhopadhyay
,
Pravin
Mahajan
,
Rod
Chalk
,
Nicola A
Burgess-brown
,
Rebecca
Sitsapesan
,
Juha T.
Huiskonen
,
Elisabeth P.
Carpenter
Diamond Proposal Number(s):
[10619]
Abstract: Mutations in either polycystin-1 (PC1 or PKD1) or polycystin-2 (PC2, PKD2 or TRPP1) cause autosomal-dominant polycystic kidney disease (ADPKD) through unknown mechanisms. Here we present the structure of human PC2 in a closed conformation, solved by electron cryomicroscopy at 4.2-Å resolution. The structure reveals a novel polycystin-specific 'tetragonal opening for polycystins' (TOP) domain tightly bound to the top of a classic transient receptor potential (TRP) channel structure. The TOP domain is formed from two extensions to the voltage-sensor-like domain (VSLD); it covers the channel's endoplasmic reticulum lumen or extracellular surface and encloses an upper vestibule, above the pore filter, without blocking the ion-conduction pathway. The TOP-domain fold is conserved among the polycystins, including the homologous channel-like region of PC1, and is the site of a cluster of ADPKD-associated missense variants. Extensive contacts among the TOP-domain subunits, the pore and the VSLD provide ample scope for regulation through physical and chemical stimuli.
|
Dec 2016
|
|
I24-Microfocus Macromolecular Crystallography
|
Abhay
Kotecha
,
Julian
Seago
,
Katherine
Scott
,
Alison
Burman
,
Silvia
Loureiro
,
Jingshan
Ren
,
Claudine
Porta
,
Helen M
Ginn
,
Terry
Jackson
,
Eva
Perez-martin
,
C Alistair
Siebert
,
Guntram
Paul
,
Juha T
Huiskonen
,
Ian M
Jones
,
Robert
Esnouf
,
Elizabeth
Fry
,
Francois F
Maree
,
Bryan
Charleston
,
Dave
Stuart
Diamond Proposal Number(s):
[10627]
Open Access
Abstract: Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.
|
Sep 2015
|
|
M01-Polara at OPIC (Oxford)
|
Open Access
Abstract: Foot-and-mouth disease virus (FMDV) belongs to the aphthovirus genus of the Picornaviridae, a family of small, icosahedral, non-enveloped, single-stranded RNA viruses. It is a highly infectious pathogen and is one of the biggest hindrances to the international trade of animals and animal products. FMDV capsids (which are unstable below pH6.5) release their genome into the host cell from an acidic compartment, such as that of an endosome, and in the process dissociate into pentamers. Whilst other members of the family (enteroviruses) have been visualized to form an expanded intermediate capsid with holes from which inner capsid proteins (VP4), N-termini (VP1) and RNA can be released, there has been no visualization of any such state for an aphthovirus, instead the capsid appears to simply dissociate into pentamers. Here we present the 8-Å resolution structure of isolated dissociated pentamers of FMDV, lacking VP4. We also found these pentamers to re-associate into a rigid, icosahedrally symmetric assembly, which enabled their structure to be solved at higher resolution (5.2 Å). In this assembly, the pentamers unexpectedly associate ‘inside out’, but still with their exposed hydrophobic edges buried. Stabilizing interactions occur between the HI loop of VP2 and its symmetry related partners at the icosahedral 3-fold axes, and between the BC and EF loops of VP3 with the VP2 βB-strand and the CD loop at the 2-fold axes. A relatively extensive but subtle structural rearrangement towards the periphery of the dissociated pentamer compared to that in the mature virus provides insight into the mechanism of dissociation of FMDV and the marked difference in antigenicity.
|
Sep 2017
|
|
I24-Microfocus Macromolecular Crystallography
|
Simon R.
Bushell
,
Ashley C. W.
Pike
,
Maria E.
Falzone
,
Nils J. G.
Rorsman
,
Chau M.
Ta
,
Robin A.
Corey
,
Thomas D.
Newport
,
John C.
Christianson
,
Lara F.
Scofano
,
Chitra
Shintre
,
Annamaria
Tessitore
,
Amy
Chu
,
Qinrui
Wang
,
Leela
Shrestha
,
Shubhashish M. M.
Mukhopadhyay
,
James D.
Love
,
Nicola A.
Burgess-brown
,
Rebecca
Sitsapesan
,
Phillip J.
Stansfeld
,
Juha T.
Huiskonen
,
Paolo
Tammaro
,
Alessio
Accardi
,
Elisabeth P.
Carpenter
Diamond Proposal Number(s):
[10619, 15433]
Open Access
Abstract: Membranes in cells have defined distributions of lipids in each leaflet, controlled by lipid scramblases and flip/floppases. However, for some intracellular membranes such as the endoplasmic reticulum (ER) the scramblases have not been identified. Members of the TMEM16 family have either lipid scramblase or chloride channel activity. Although TMEM16K is widely distributed and associated with the neurological disorder autosomal recessive spinocerebellar ataxia type 10 (SCAR10), its location in cells, function and structure are largely uncharacterised. Here we show that TMEM16K is an ER-resident lipid scramblase with a requirement for short chain lipids and calcium for robust activity. Crystal structures of TMEM16K show a scramblase fold, with an open lipid transporting groove. Additional cryo-EM structures reveal extensive conformational changes from the cytoplasmic to the ER side of the membrane, giving a state with a closed lipid permeation pathway. Molecular dynamics simulations showed that the open-groove conformation is necessary for scramblase activity.
|
Sep 2019
|
|
I02-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
|
Kamel
El Omari
,
Sai
Li
,
Abhay
Kotecha
,
Thomas S.
Walter
,
Eduardo A.
Bignon
,
Karl
Harlos
,
Pentti
Somerharju
,
Felix
De Haas
,
Daniel K.
Clare
,
Mika
Molin
,
Felipe
Hurtado
,
Mengqiu
Li
,
Jonathan
Grimes
,
Dennis H.
Bamford
,
Nicole D.
Tischler
,
Juha T.
Huiskonen
,
Dave I.
Stuart
,
Elina
Roine
Diamond Proposal Number(s):
[10627]
Open Access
Abstract: Lipid membrane fusion is an essential function in many biological processes. Detailed mechanisms of membrane fusion and the protein structures involved have been mainly studied in eukaryotic systems, whereas very little is known about membrane fusion in prokaryotes. Haloarchaeal pleomorphic viruses (HRPVs) have a membrane envelope decorated with spikes that are presumed to be responsible for host attachment and membrane fusion. Here we determine atomic structures of the ectodomains of the 57-kDa spike protein VP5 from two related HRPVs revealing a previously unreported V-shaped fold. By Volta phase plate cryo-electron tomography we show that VP5 is monomeric on the viral surface, and we establish the orientation of the molecules with respect to the viral membrane. We also show that the viral membrane fuses with the host cytoplasmic membrane in a process mediated by VP5. This sheds light on protein structures involved in prokaryotic membrane fusion.
|
Feb 2019
|
|