I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[14027]
Open Access
Abstract: Zn–air batteries are very promising devices for energy storage at high energy density due to their intrinsic safety, environmental friendliness, and low cost, but still, there are key issues to be solved to get to the industrial scale. One of the unsolved problems is the poor cyclability of batteries based on aqueous solvents that urges to consider nonaqueous solvents. Among different possible options are deep eutectic solvents, which are cost‐effective and technologically relatively easy to implement. The present investigation reports for the first time an operando scanning soft X‐ray microscope analysis of the Zn behaviour in a choline–chloride/urea deep eutectic solvents electrolyte during the cathodic and anodic phase formation processes taking place in battery charge and discharge, providing a platform for in‐depth space–time dependent investigations of the chemistry of crystallites evolving during potential cycling. These operando measurements have been enabled by the construction of a novel wet cell, improving the design and filling protocol of earlier generation cells developed by authors.
High‐resolution soft X‐ray microscope images were acquired in two modes: (a) dynamic mode at a fixed beam energy, allowing to follow morphology evolution under electrochemical control and (b) static mode for selected morphologies representative of characteristic Zn growth and dissolution steps.
|
Mar 2019
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
A.
Steele
,
L. G
Benning
,
R.
Writh
,
A.
Schreiber
,
T.
Araki
,
F. M.
Mccubbin
,
M. R.
Fries
,
L. R.
Nittler
,
J.
Wang
,
L. J.
Hallis
,
P. G.
Conrad
,
C.
Conley
,
S.
Vitale
,
A. C.
O'Brien
,
V.
Riggi
,
K.
Rogers
Diamond Proposal Number(s):
[2444]
Abstract: Water-rock interactions are relevant to planetary habitability, influencing mineralogical diversity and the production of organic molecules. We examine carbonates and silicates in the martian meteorite Allan Hills 84001 (ALH 84001), using colocated nanoscale analyses, to characterize the nature of water-rock reactions on early Mars. We find complex refractory organic material associated with mineral assemblages that formed by mineral carbonation and serpentinization reactions. The organic molecules are colocated with nanophase magnetite; both formed in situ during water-rock interactions on Mars. Two potentially distinct mechanisms of abiotic organic synthesis operated on early Mars during the late Noachian period (3.9 to 4.1 billion years ago).
|
Jan 2022
|
|
I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[22484]
Open Access
Abstract: We have spatially investigated lattice spacing, twist, and bending in individual laterally (110)-oriented Ge nanowires (NWs) on pre-patterned Si(001) substrates. A combination of synchrotron-based scanning x-ray diffraction microscopy with an x-ray focus size of 50 nm and numerical finite element calculations on the elastic strain reveals a three-dimensional relaxation scenario, which becomes particularly complex next to NW nucleation points. Despite a lattice mismatch of 4.2%, lattice compliance is preserved, since strain can effectively be released close to the seeding window. Areas in the NWs other than that appear fully relaxed. The resulting NW twist, i.e., lattice rotations around the growth axis, amounts to less than 0.1°.
|
Mar 2022
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[12738]
Open Access
Abstract: Iron (Fe) limits or co-limits primary productivity and nitrogen fixation in large regions of the world's oceans, and the supply of Fe from hydrothermal vents to the deep ocean is now known to be extensive. However, the mechanisms that control the amount of hydrothermal Fe that is stabilized in the deep ocean, and thus dictate the impact of hydrothermal Fe sources on surface ocean biogeochemistry, are unclear. To learn more, we have examined the dispersion of total dissolvable Fe (TDFe), dissolved Fe (dFe) and soluble Fe (sFe) in the buoyant and non-buoyant hydrothermal plume above the Beebe vent field, Caribbean Sea. We have also characterized plume particles using electron microscopy and synchrotron based spectromicroscopy.
We show that the majority of dFe in the Beebe hydrothermal plume was present as colloidal Fe (dFe − sFe = cFe). During ascent of the buoyant plume, a significant fraction of particulate Fe (pFe = TDFe − dFe) was lost to settling and exchange with colloids. Conversely, the opposite was observed in the non-buoyant plume, where pFe concentrations increased during non-buoyant plume dilution, cFe concentrations decreased apparently due to colloid aggregation. Elemental mapping of carbon, oxygen and iron in plume particles reveals their close association and indicates that exchanges of Fe between colloids and particles must include transformations of organic carbon and Fe oxyhydroxide minerals. Notably, sFe is largely conserved during plume dilution, and this is likely to be due to stabilization by organic ligands, in contrast to the more dynamic exchanges between pFe and cFe.
This study highlights that the size of the sFe stabilizing ligand pool, and the rate of iron-rich colloid aggregation will control the amount and physico-chemical composition of dFe supplied to the ocean interior from hydrothermal systems. Both the ligand pool, and the rate of cFe aggregation in hydrothermal plumes remain uncertain and determining these are important intermediate goals to more accurately assess the impact of hydrothermalism on the ocean's carbon cycle.
|
Jan 2019
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[23583]
Abstract: Organic microfossils in Meso- and Neoproterozoic rocks are of key importance to track the emergence and evolution of eukaryotic life. An increasing number of studies combine Raman spectroscopy with synchrotron-based methods to characterize these microfossils. A recurring observation is that Raman spectra of organic microfossils show negligible variation on a sample scale and that variation between different samples can be explained by differences in thermal maturation or in the biologic origin of organic precursor material. There is a paucity of work, however, that explores the extent to which the petrographic framework and diagenetic processes might influence the chemical structure of organic materials. We present a detailed Raman spectroscopy-based study of a complex organic microfossil assemblage in the ca. 1 Ga old Angmaat Formation, Baffin Island, Canada. This formation contains abundant early diagenetic chert that preserves silicified microbial mats with numerous, readily identifiable organic microfossils. Individual chert beds show petrographic differences with discrete episodes of cementation and recrystallization. Raman spectroscopy reveals measurable variation of organic maturity between samples and between neighboring organic microfossils of the same taxonomy and taphonomic state. Scanning transmission X-ray microscopy performed on taphonomically similar coccoidal microfossils from the same thin section shows distinct chemical compositions, with varying ratios of aromatic compounds to ketones and phenols. Such observations imply that geochemical variation of organic matter is not necessarily coupled to thermal alteration or organic precursor material. Variation of the Raman signal across single samples is most likely linked to the diagenetic state of analyzed materials and implies an association between organic preservation and access to diagenetic fluids. Variation in the maturity of individual microfossils may be a natural outcome of local diagenetic processes and potentially exceeds differences derived from precursor organic material. These observations stress the importance of detailed in situ characterization.
|
Jul 2021
|
|
B16-Test Beamline
B18-Core EXAFS
I08-Scanning X-ray Microscopy beamline (SXM)
|
Debi
Garai
,
Vladyslav
Solokha
,
Axel
Wilson
,
Ilaria
Carlomagno
,
Ajay
Gupta
,
Mukul
Gupta
,
V. R.
Reddy
,
Carlo
Meneghini
,
Francesco
Carla
,
Christian
Morawe
,
Jorg
Zegenhagen
Diamond Proposal Number(s):
[17145]
Open Access
Abstract: This work reports about a novel approach for investigating surface processes during the early stages of galvanic corrosion of stainless steel in situ by employing ultra-thin films and synchrotron X-radiation. Characterized by X-ray techniques and voltammetry, such films, sputter deposited from austenitic steel, were found representing useful replicas of the target material. Typical for stainless steel, the surface consists of a passivation layer of Fe- and Cr-oxides, a couple of nm thick, that is depleted of Ni. Films of ≈ 4 nm thickness were studied in situ in an electrochemical cell under potential control (-0.6 to +0.8 V vs Ag/AgCl) during exposure to 0.1 M KCl. Material transport was recorded with better than 1/10 monolayer sensitivity by X-ray spectroscopy. Leaching of Fe was observed in the cathodic range and the therefor necessary reduction of Fe-oxide appears to be accelerated by atomic hydrogen. Except for minor leaching, reduction of Ni, while expected from Pourbaix diagram, was not observed until at ≈ +0.8 V Cr-oxide was removed from the film. After couple of minutes exposure at +0.8 V, the current in the electrochemical cell revealed a rapid pitting event that was simultaneously monitored by X-ray spectroscopy. Continuous loss of Cr and Ni was observed during the induction time leading to the pitting, suggesting a causal connection with the event. Finally, a spectroscopic image of a pit was recorded ex situ with 50 nm lateral and 1 nm depth resolution by soft X-ray scanning absorption microscopy at the Fe L2,3-edges by using a 80 nm film on a SiN membrane, which is further demonstrating the usefulness of thin films for corrosion studies.
|
Dec 2020
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[26072]
Open Access
Abstract: Pseudanabaena dominates cyanobacterial blooms in the First-Generation Magnox Storage Pond (FGMSP) at a UK nuclear site. The fission product Cs is a radiologically significant radionuclide in the pond, and understanding the interactions between Cs and Pseudanabaena spp. is therefore important for determining facility management strategies, as well as improving understanding of microbiological responses to this non-essential chemical analogue of K. This study evaluated the fate of Cs following interactions with Pseudanabaena catenata, a laboratory strain most closely related to that dominating FGMSP blooms. Experiments showed that Cs (1 mM) exposure did not affect the growth of P. catenata, while a high concentration of K (5 mM) caused a significant reduction in cell yield. Scanning transmission X-ray microscopy elemental mapping identified Cs accumulation to discrete cytoplasmic locations within P. catenata cells, indicating a potential bioremediation option for Cs. Proteins related to stress responses and nutrient limitation (K, P) were stimulated by Cs treatment. Furthermore, selected K+ transport proteins were mis-regulated by Cs dosing, which indicates the importance of the K+ transport system for Cs accumulation. These findings enhance understanding of Cs fate and biological responses within Pseudanabaena blooms, and indicate that K exposure might provide a microbial bloom control strategy.
|
Dec 2022
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[21587]
Abstract: A charcoal-like product known as ‘biochar’ can be produced from agricultural waste biomass such as nutshells. One conversion method is pyrolysis, a process that involves heating the waste in the absence of oxygen. During pyrolysis, changes in the size and shape (morphology) of particles increase the surface area of the biomass. This surface area controls how biochar binds to (adsorbs)
pollutants, speeds up chemical reactions, and stores energy. A lack of understanding of how biomass morphology changes during biochar production makes it difficult to tailor biochar properties for specific applications.
Facilities at the Diamond Manchester Imaging Branchline (I13-2) enabled a team of researchers to conduct rapid high-resolution X-ray imaging of biomass. This allowed real-time tracking of particle morphology and porosity during pyrolysis. The results showed that the morphology and porosity of different nutshells evolved differently during pyrolysis. However, these differences were less pronounced in biomass pre-soaked with an alkaline solution. Almond shells shrank more but gained less porosity than walnut shells, which have thicker- walled cells on average. The results suggest that the difference is related to how heat penetrates particles of biomass during pyrolysis. Porosity was found to accumulate towards the centre of particles during pyrolysis for the same reason.
The ability to customise biochar morphology would benefit its many environmental applications. These include removing pollutants from air, water, and soil; speeding up chemical reactions; and even storing energy. Tracking the morphology of biomass during biochar production is the first step towards achieving this.
|
Jul 2021
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[16407]
Open Access
Abstract: Biogas-energy is marginally profitable against the “parasitic” energy demands of processing biomass. Biogas involves microbial fermentation of feedstock hydrolyzate generated enzymatically or thermochemically. The latter also produces 5-hydroxymethyl furfural (5-HMF) which can be catalytically upgraded to 2, 5-dimethyl furan (DMF), a “drop in fuel.” An integrated process is proposed with side-stream upgrading into DMF to mitigate the “parasitic” energy demand. 5-HMF was upgraded using bacterially-supported Pd/Ru catalysts. Purpose-growth of bacteria adds additional process costs; Pd/Ru catalysts biofabricated using the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans were compared to those generated from a waste consortium of acidophilic sulfidogens (CAS). Methyl tetrahydrofuran (MTHF) was used as the extraction-reaction solvent to compare the use of bio-metallic Pd/Ru catalysts to upgrade 5-HMF to DMF from starch and cellulose hydrolyzates. MTHF extracted up to 65% of the 5-HMF, delivering solutions, respectively, containing 8.8 and 2.2 g 5-HMF/L MTHF. Commercial 5% (wt/wt) Ru-carbon catalyst upgraded 5-HMF from pure solution but it was ineffective against the hydrolyzates. Both types of bacterial catalyst (5wt%Pd/3-5wt% Ru) achieved this, bio-Pd/Ru on the CAS delivering the highest conversion yields. The yield of 5-HMF from starch-cellulose thermal treatment to 2,5 DMF was 224 and 127 g DMF/kg extracted 5-HMF, respectively, for CAS and D. desulfuricans catalysts, which would provide additional energy of 2.1 and 1.2 kWh/kg extracted 5-HMF. The CAS comprised a mixed population with three patterns of metallic nanoparticle (NP) deposition. Types I and II showed cell surface-localization of the Pd/Ru while type III localized NPs throughout the cell surface and cytoplasm. No metallic patterning in the NPs was shown via elemental mapping using energy dispersive X-ray microanalysis but co-localization with sulfur was observed. Analysis of the cell surfaces of the bulk populations by X-ray photoelectron spectroscopy confirmed the higher S content of the CAS bacteria as compared to D. desulfuricans and also the presence of Pd-S as well as Ru-S compounds and hence a mixed deposit of PdS, Pd(0), and Ru in the form of various +3, +4, and +6 oxidation states. The results are discussed in the context of recently-reported controlled palladium sulfide ensembles for an improved hydrogenation catalyst.
|
May 2019
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[26226]
Open Access
Abstract: Batteries with inorganic solid-state electrolytes (ISSE) are attracting notable interest for next-generation systems implementing Lithium (Li) metal anodes, in view of achieving higher energy densities combined with superior safety. Notwithstanding extensive research and development work, this technology is not yet ready for industrial implementation, one of the key challenges being the stability of ISSEs, chiefly at the anodic interface. This work attacks this issue for the specific case of the LAGP/Li (Lithium Aluminium Germanium Phosphate/Lithium) interface with a micro-spectroscopic approach centred on post mortem Scanning Transmission X-ray Microscopy (STXM) of intact LMO/LAGP/Li thin-film batteries, microfabricated in discharged state. Pristine and cycled cells were mapped to pinpoint morphochemical changes, induced by electrochemical ageing. The evidenced shape changes, corresponding to mechanical damaging of the solid/solid electrodic interfaces correlate with LAGP decomposition at the anode, leading to reduction of Ge, whereas the chemical state at the cathodic interface is preserved. Thanks to its submicron spacial resolution, the STXM at the Ge L-edge and O K-edge spectra allowed to assess the highly localized nature of the chemical transformation of LAGP and its correlation with the formation of Li outgrowth features.
|
Nov 2022
|
|