I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[7641]
Open Access
Abstract: The availability of genome sequences for some of the most devastating eukaryotic plant pathogens has led a revolution in our understanding of how these parasites cause disease, and how their hosts respond to invasion. One of the most significant discoveries from the genome sequences of plant pathogenic oomycetes is the plethora of putative translocated effector proteins these organisms encode. Many effector genes display signatures of rapid evolution and tend to reside in dynamic regions of the pathogen genomes. Once inside the host, effector proteins modulate cellular processes, mainly suppressing plant immunity. Effectors can also be recognized directly or indirectly by the plant immune system through the action of disease resistance proteins
|
Jan 2012
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[6388]
Open Access
Abstract: Bdellovibrio are predatory bacteria that have evolved to invade virtually all Gram-negative bacteria, including many prominent pathogens. Upon invasion, prey bacteria become rounded up into an osmotically stable niche for the Bdellovibrio, preventing further superinfection and allowing Bdellovibrio to replicate inside without competition, killing the prey bacterium and degrading its contents. Historically, prey rounding was hypothesized to be associated with peptidoglycan (PG) metabolism; we found two Bdellovibrio genes, bd0816 and bd3459, expressed at prey entry and encoding proteins with limited homologies to conventional dacB/PBP4 DD-endo/carboxypeptidases (responsible for peptidoglycan maintenance during growth and division). We tested possible links between Bd0816/3459 activity and predation. Bd3459, but not an active site serine mutant protein, bound ?-lactam, exhibited DD-endo/carboxypeptidase activity against purified peptidoglycan and, importantly, rounded up E. coli cells upon periplasmic expression. A ?Bd0816 ?Bd3459 double mutant invaded prey more slowly than the wild type (with negligible prey cell rounding) and double invasions of single prey by more than one Bdellovibrio became more frequent. We solved the crystal structure of Bd3459 to 1.45 Å and this revealed predation-associated domain differences to conventional PBP4 housekeeping enzymes (loss of the regulatory domain III, alteration of domain II and a more exposed active site). The Bd3459 active site (and by similarity the Bd0816 active site) can thus accommodate and remodel the various bacterial PGs that Bdellovibrio may encounter across its diverse prey range, compared to the more closed active site that “regular” PBP4s have for self cell wall maintenance. Therefore, during evolution, Bdellovibrio peptidoglycan endopeptidases have adapted into secreted predation-specific proteins, preventing wasteful double invasion, and allowing activity upon the diverse prey peptidoglycan structures to sculpt the prey cell into a stable intracellular niche for replication.
|
Feb 2012
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Diamond Proposal Number(s):
[9306]
Open Access
Abstract: Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) and Knob-associated Histidine-rich Protein (KAHRP) are directly linked to malaria pathology. PfEMP1 and KAHRP cluster on protrusions (knobs) on the P. falciparum-infected erythrocyte surface and enable pathogenic cytoadherence of infected erythrocytes to the host microvasculature, leading to restricted blood flow, oxygen deprivation and damage of tissues. Here we characterize the interactions of PfEMP1 and KAHRP with host erythrocyte spectrin using biophysical, structural and computational approaches. These interactions assist knob formation and, thus, promote cytoadherence. We show that the folded core of the PfEMP1 cytosolic domain interacts broadly with erythrocyte spectrin but shows weak, residue-specific preference for domain 17 of α spectrin, which is proximal to the erythrocyte cytoskeletal junction. In contrast, a protein sequence repeat region in KAHRP preferentially associates with domains 10–14 of β spectrin, proximal to the spectrin–ankyrin complex. Structural models of PfEMP1 and KAHRP with spectrin combined with previous microscopy and protein interaction data suggest a model for knob architecture.
|
Aug 2017
|
|
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[7197]
Open Access
Abstract: Gram-negative bacteria secrete virulence factors and assemble fibre structures on their cell surface using specialized secretion systems. Three of these, T2SS, T3SS and T4PS, are characterized by large outer membrane channels formed by proteins called secretins. Usually, a cognate lipoprotein pilot is essential for the assembly of the secretin in the outer membrane. The structures of the pilotins of the T3SS and T4PS have been described. However in the T2SS, the molecular mechanism of this process is poorly understood and its structural basis is unknown. Here we report the crystal structure of the pilotin of the T2SS that comprises an arrangement of four ?-helices profoundly different from previously solved pilotins from the T3SS and T4P and known four ?-helix bundles. The architecture can be described as the insertion of one ?-helical hairpin into a second open ?-helical hairpin with bent final helix. NMR, CD and fluorescence spectroscopy show that the pilotin binds tightly to 18 residues close to the C-terminus of the secretin. These residues, unstructured before binding to the pilotin, become helical on binding. Data collected from crystals of the complex suggests how the secretin peptide binds to the pilotin and further experiments confirm the importance of these C-terminal residues in vivo.
|
Feb 2012
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[8302, 7512]
Open Access
Abstract: The covalent attachment of adenosine monophosphate (AMP) to proteins, a process called AMPylation (adenylylation), has recently emerged as a novel theme in microbial pathogenesis. Although several AMPylating enzymes have been characterized, the only known virulence protein with de-AMPylation activity is SidD from the human pathogen Legionella pneumophila. SidD de-AMPylates mammalian Rab1, a small GTPase involved in secretory vesicle transport, thereby targeting the host protein for inactivation. The molecular mechanisms underlying Rab1 recognition and de-AMPylation by SidD are unclear. Here, we report the crystal structure of the catalytic region of SidD at 1.6 Å resolution. The structure reveals a phosphatase-like fold with additional structural elements not present in generic PP2C-type phosphatases. The catalytic pocket contains a binuclear metal-binding site characteristic of hydrolytic metalloenzymes, with strong dependency on magnesium ions. Subsequent docking and molecular dynamics simulations between SidD and Rab1 revealed the interface contacts and the energetic contribution of key residues to the interaction. In conjunction with an extensive structure-based mutational analysis, we provide in vivo and in vitro evidence for a remarkable adaptation of SidD to its host cell target Rab1 which explains how this effector confers specificity to the reaction it catalyses.
|
May 2013
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Open Access
Abstract: Experimental evidence suggests that a tetramer of integrase (IN) is the protagonist of the concerted strand transfer reaction, whereby both ends of retroviral DNA are inserted into a host cell chromosome. Herein we present two crystal structures containing the N-terminal and the catalytic core domains of maedi-visna virus IN in complex with the IN binding domain of the common lentiviral integration co-factor LEDGF. The structures reveal that the dimer-of-dimers architecture of the IN tetramer is stabilized by swapping N-terminal domains between the inner pair of monomers poised to execute catalytic function. Comparison of four independent IN tetramers in our crystal structures elucidate the basis for the closure of the highly flexible dimer-dimer interface, allowing us to model how a pair of active sites become situated for concerted integration. Using a range of complementary approaches, we demonstrate that the dimer-dimer interface is essential for HIV-1 IN tetramerization, concerted integration in vitro, and virus infectivity. Our structures moreover highlight adaptable changes at the interfaces of individual IN dimers that allow divergent lentiviruses to utilize a highly-conserved, common integration co-factor
|
Jul 2009
|
|
I02-Macromolecular Crystallography
I04-Macromolecular Crystallography
|
Aravindan
Ilangovan
,
Matthew
Fletcher
,
Giordano
Rampioni
,
Christian
Pustelny
,
Kendra
Rumbaugh
,
Stephan
Heeb
,
Miguel
Cámara
,
Alex
Truman
,
Siri Ram
Chhabra
,
Jonas
Emsley
,
Paul
Williams
Diamond Proposal Number(s):
[6388]
Open Access
Abstract: Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4-hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ)
|
Jul 2013
|
|
I04-Macromolecular Crystallography
|
Open Access
Abstract: Gram-negative pathogens express fibrous adhesive organelles that mediate targeting to sites of infection. The major class of these organelles is assembled via the classical, alternative and archaic chaperone-usher pathways. Although non-classical systems share a wider phylogenetic distribution and are associated with a range of diseases, little is known about their assembly mechanisms. Here we report atomic-resolution insight into the structure and biogenesis of Acinetobacter baumannii Csu and Escherichia coli ECP biofilm-mediating pili. We show that the two non-classical systems are structurally related, but their assembly mechanism is strikingly different from the classical assembly pathway. Non-classical chaperones, unlike their classical counterparts, maintain subunits in a substantially disordered conformational state, akin to a molten globule. This is achieved by a unique binding mechanism involving the register-shifted donor strand complementation and a different subunit carboxylate anchor. The subunit lacks the classical pre-folded initiation site for donor strand exchange, suggesting that recognition of its exposed hydrophobic core starts the assembly process and provides fresh inspiration for the design of inhibitors targeting chaperone-usher systems.
|
Nov 2015
|
|
I24-Microfocus Macromolecular Crystallography
|
Andrea A.
Berry
,
Yi
Yang
,
Natalia
Pakharukova
,
James
Garnett
,
Wei-Chao
Lee
,
Ernesto
Cota
,
Jan
Marchant
,
Saumendra
Roy
,
Minna
Tuittila
,
Bing
Liu
,
Keith G.
Inman
,
Fernando
Ruiz-Perez
,
Inacio
Mandomando
,
James P.
Nataro
,
Anton V.
Zavialov
,
Steve
Matthews
Diamond Proposal Number(s):
[9424]
Open Access
Abstract: Enteroaggregative Escherichia coli (EAEC) is a leading cause of acute and persistent diarrhea worldwide. A recently emerged Shiga-toxin-producing strain of EAEC resulted in significant mortality and morbidity due to progressive development of hemolytic-uremic syndrome. The attachment of EAEC to the human intestinal mucosa is mediated by aggregative adherence fimbria (AAF). Using X-ray crystallography and NMR structures, we present new atomic resolution insight into the structure of AAF variant I from the strain that caused the deadly outbreak in Germany in 2011, and AAF variant II from archetype strain 042, and propose a mechanism for AAF-mediated adhesion and biofilm formation. Our work shows that major subunits of AAF assemble into linear polymers by donor strand complementation where a single minor subunit is inserted at the tip of the polymer by accepting the donor strand from the terminal major subunit. Whereas the minor subunits of AAF have a distinct conserved structure, AAF major subunits display large structural differences, affecting the overall pilus architecture. These structures suggest a mechanism for AAF-mediated adhesion and biofilm formation. Binding experiments using wild type and mutant subunits (NMR and SPR) and bacteria (ELISA) revealed that despite the structural differences AAF recognize a common receptor, fibronectin, by employing clusters of basic residues at the junction between subunits in the pilus. We show that AAF-fibronectin attachment is based primarily on electrostatic interactions, a mechanism not reported previously for bacterial adhesion to biotic surfaces.
|
Sep 2014
|
|
B21-High Throughput SAXS
I02-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[20113]
Open Access
Abstract: AMPylation, the post-translational modification with adenosine monophosphate (AMP), is catalyzed by effector proteins from a variety of pathogens. Legionella pneumophila is thus far the only known pathogen that, in addition to encoding an AMPylase (SidM/DrrA), also encodes a deAMPylase, called SidD, that reverses SidM-mediated AMPylation of the vesicle transport GTPase Rab1. DeAMPylation is catalyzed by the N-terminal phosphatase-like domain of SidD. Here, we determined the crystal structure of full length SidD including the uncharacterized C-terminal domain (CTD). A flexible loop rich in aromatic residues within the CTD was required to target SidD to model membranes in vitro and to the Golgi apparatus within mammalian cells. Deletion of the loop (Δloop) or substitution of its aromatic phenylalanine residues rendered SidD cytosolic, showing that the hydrophobic loop is the primary membrane-targeting determinant of SidD. Notably, deletion of the two terminal alpha helices resulted in a CTD variant incapable of discriminating between membranes of different composition. Moreover, a L. pneumophila strain producing SidDΔloop phenocopied a L. pneumophila ΔsidD strain during growth in mouse macrophages and displayed prolonged co-localization of AMPylated Rab1 with LCVs, thus revealing that membrane targeting of SidD via its CTD is a critical prerequisite for its ability to catalyze Rab1 deAMPylation during L. pneumophila infection.
|
Aug 2020
|
|